14 research outputs found

    Route to thermalization in the α-Fermi–Pasta–Ulam system

    Get PDF
    We study the original α-Fermi–Pasta–Ulam (FPU) system with N = 16, 32, and 64 masses connected by a nonlinear quadratic spring. Our approach is based on resonant wave–wave interaction theory; i.e., we assume that, in the weakly nonlinear regime (the one in which Fermi was originally interested), the large time dynamics is ruled by exact resonances. After a detailed analysis of the α-FPU equation of motion, we find that the first nontrivial resonances correspond to six-wave interactions. Those are precisely the interactions responsible for the thermalization of the energy in the spectrum. We predict that, for small-amplitude random waves, the timescale of such interactions is extremely large and it is of the order of 1/ϵ8, where ϵ is the small parameter in the system. The wave–wave interaction theory is not based on any threshold: Equipartition is predicted for arbitrary small nonlinearity. Our results are supported by extensive numerical simulations. A key role in our finding is played by the Umklapp (flip-over) resonant interactions, typical of discrete systems. The thermodynamic limit is also briefly discussed

    Cannabinoid CB2 receptors mediate the anxiolytic-like effects of monoacylglycerol lipase inhibition in a rat model of predator-induced fear

    No full text
    The endocannabinoid system is a key regulator of the response to psychological stress. Inhibitors of monoacylglycerol lipase (MGL), the enzyme that deactivates the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG), exert anxiolytic-like effects in rodent models via 2-AG-dependent activation of CB1 cannabinoid receptors. In the present study, we examined whether the MGL inhibitor JZL184 might modulate persistent predator-induced fear in rats, a model that captures features of human post-traumatic stress disorder. Exposure to 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), a volatile chemical that is innately aversive to some rodent species, produced in male rats a long-lasting anxiety-like state that was measured 7 days later in the elevated plus maze test. Systemic administration of JZL184 [4, 8 and 16 mg/kg, intraperitoneal (IP)] 4 h before testing caused dose-dependent inhibition of MGL activity and elevation of 2-AG content in brain tissue. Concomitantly, the inhibitor suppressed TMT-induced fear behaviors with a median effective dose (ED50) of 4 mg/kg. A similar behavioral response was observed with another MGL inhibitor, KML29 (4 and 16 mg/kg, IP). Surprisingly, the effect of JZL184 was prevented by co-administration of the CB2 inverse agonist AM630 (5 mg/kg, IP), but not the CB1 inverse agonist rimonabant (1 mg/kg, IP). Supporting mediation of the response by CB2 receptors, the CB2 agonist JWH133 (0.3, 1 and 3 mg/kg, IP) also produced anxiolytic-like effects in TMT-stressed rats, which were suppressed by AM630. Notably, (i) JWH133 was behaviorally ineffective in animals that had no prior experience with TMT; and (ii) CB2 mRNA levels in rat prefrontal cortex were elevated 7 days after exposure to the aversive odorant. The results suggest that JZL184 attenuates the behavioral consequences of predator stress through a mechanism that requires 2-AG-mediated activation of CB2 receptors, whose transcription may be induced by the stress itself

    Aerosol optical depth over the Arctic: a comparison of ECHAM-HAM and TM5 with ground-based, satellite and reanalysis data

    No full text
    We compare ground-based measurements of aerosol optical depth and Angstrom parameter at six Arctic stations in the period 2001-2006 with the results from two global aerosol dynamics and transport models, ECHAM-HAM and TM5. Satellite measurements from MODIS and the MACC reanalysis product are used to examine the spatial distribution and the seasonality of these parameters and to compare them with model results. We find that both models provide a good reproduction of the Angstrom parameter but significantly underestimate the observed AOD values. We also explore the effects of changes in emissions, model resolution and the parametrization of wet scavenging

    Comparative Pharmacokinetics of Δ9-Tetrahydrocannabinol in Adolescent and Adult Male Mice

    No full text
    We investigated the pharmacokinetic properties of Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive constituent of cannabis, in adolescent and adult male mice. The drug was administered at logarithmically ascending doses (0.5, 1.6, and 5 mg/kg, i.p.) to pubertal adolescent (37-day-old) and adult (70-day-old) mice. Δ9-THC and its first-pass metabolites-11-hydroxy-Δ9-THC and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC)-were quantified in plasma, brain, and white adipose tissue (WAT) using a validated isotope-dilution liquid chromatography/tandem mass spectrometry assay. Δ9-THC (5 mg/kg) reached 50% higher circulating concentration in adolescent mice than in adult mice. A similar age-dependent difference was observed in WAT. Conversely, 40%-60% lower brain concentrations and brain-to-plasma ratios for Δ9-THC and 50%-70% higher brain concentrations for Δ9-THC metabolites were measured in adolescent animals relative to adult animals. Liver microsomes from adolescent mice converted Δ9-THC into 11-COOH-THC twice as fast as adult microsomes. Moreover, the brains of adolescent mice contained higher mRNA levels of the multidrug transporter breast cancer resistance protein, which may extrude Δ9-THC from the brain, and higher mRNA levels of claudin-5, a protein that contributes to blood-brain barrier integrity. Finally, administration of Δ9-THC (5 mg/kg) reduced spontaneous locomotor activity in adult, but not adolescent, animals. The results reveal the existence of multiple differences in the distribution and metabolism of Δ9-THC between adolescent and adult male mice, which might influence the pharmacological response to the drug. SIGNIFICANCE STATEMENT: Animal studies suggest that adolescent exposure to Δ9-tetrahydrocannabinol (Δ9-THC), the intoxicating constituent of cannabis, causes persistent changes in brain function. These studies generally overlook the impact that age-dependent changes in the distribution and metabolism of the drug might exert on its pharmacological effects. This report provides a comparative analysis of the pharmacokinetic properties of Δ9-THC in adolescent and adult male mice and outlines multiple functionally significant dissimilarities in the distribution and metabolism of Δ9-THC between these two age groups

    Pharmacokinetics, pharmacodynamics and safety studies on URB937, a peripherally restricted fatty acid amide hydrolase inhibitor, in rats

    No full text
    Objectives URB937, a peripheral fatty acid amide hydrolase (FAAH) inhibitor, exerts profound analgesic effects in animal models. We examined, in rats, (1) the pharmacokinetic profile of oral URB937; (2) the compound's ability to elevate levels of the representative FAAH substrate, oleoylethanolamide (OEA); and (3) the compound's tolerability after oral administration. Methods We developed a liquid chromatography/tandem mass spectrometry (LC/MS-MS) method to measure URB937 and used a pre-existing LC/MS-MS assay to quantify OEA. FAAH activity was measured using a radioactive substrate. The tolerability of single or repeated (once daily for 2 weeks) oral administration of supramaximal doses of URB937 (100, 300, 1000 mg/kg) was assessed by monitoring food intake, water intake and body weight, followed by post-mortem evaluation of organ structure. Key findings URB937 was orally available in male rats (F = 36%), but remained undetectable in brain when administered at doses that maximally inhibit FAAH activity and elevate OEA in plasma and liver. Acute and subchronic treatment with high doses of URB937 was well-tolerated and resulted in FAAH inhibition in brain. Conclusions Pain remains a major unmet medical need. The favourable pharmacokinetic and pharmacodynamic properties of URB937, along with its tolerability, encourage further development studies on this compound

    Complete clearance of Ph+ metaphases after 3 months is a very early indicator of good response to imatinib as front-line treatment in chronic myelogenous leukemia.

    Get PDF
    Aim: To address the incidence and the prognostic role of a very early standard complete cytogenetic response (CCyR) or all Ph– metaphases (MET–, when 100.0 × 109/l at onset (p < 0.001), and male gender (p = 0.019) had a negative impact on achievement of CCyR/MET– at 3 months. Among patients with CCyR/MET– after 3 months, there were 15 failures (10.8%) compared to 21 (47.7%) among patients with MET+ (p < 0.001). The 5-year overall survival was 97.0% in patients CCyR/MET– at 3 months and 91.8% in patients MET+ at 3 months (p = 0.277); the 5-year progression-free survival was 88.2% in patients CCyR/MET– at 3 months and 48.4% in patients MET+ at 3 months (p < 0.001). Conclusions: The achievement of CCyR/MET– at 3 months seems to have prognostic relevance and could be a very early and useful indicator of an excellent response to IM beyond European LeukemiaNet guidelines
    corecore