21 research outputs found

    Documento de posición sobre las necesidades y niveles óptimos de vitamina D

    Get PDF
    IntroducciónEn los últimos años se ha producido un notable interés por la vitamina D, no sólo por su importancia crucial en el metabolismo mineral óseo, sino también por los efectos extraóseos, cada vez mejor conocidos. Asi mismo, se ha constatado la existencia de valores séricos bajos de vitamina D, por debajo de lo deseable, en diferentes poblaciones, tanto sanas como enfermas, y se discute cuáles serían los niveles óptimos de vitamina D en sangre. Por todo ello, la Sociedad Española de Investigación Ósea y Metabolismo Mineral (SEIOMM), conjuntamente con todas las Sociedades Científicas implicadas en el estudio del metabolismo óseo, han elaborado el presente documento de posición sobre las necesidades y niveles óptimos de vitamina D

    Interleukin 15 Levels in Serum May Predict a Severe Disease Course in Patients with Early Arthritis

    Get PDF
    Background: Interleukin-15 (IL-15) is thought to be involved in the physiopathological mechanisms of RA and it can be detected in the serum and the synovial fluid of inflamed joints in patients with RA but not in patients with osteoarthritis or other inflammatory joint diseases. Therefore, the objective of this work is to analyse whether serum IL-15 (sIL-15) levels serve as a biomarker of disease severity in patients with early arthritis (EA). Methodology and Results: Data from 190 patients in an EA register were analysed (77.2% female; median age 53 years; 6-month median disease duration at entry). Clinical and treatment information was recorded systematically, especially the prescription of disease modifying anti-rheumatic drugs. Two multivariate longitudinal analyses were performed with different dependent variables: 1) DAS28 and 2) a variable reflecting intensive treatment. Both included sIL-15 as predictive variable and other variables associated with disease severity, including rheumatoid factor (RF) and anti-cyclic citrullinated peptide antibodies (ACPA). Of the 171 patients (638 visits analysed) completing the follow-up, 71% suffered rheumatoid arthritis and 29% were considered as undifferentiated arthritis. Elevated sIL-15 was detected in 29% of this population and this biomarker did not overlap extensively with RF or ACPA. High sIL-15 levels (β Coefficient [95% confidence interval]: 0.12 [0.06-0.18]; p&0.001) or ACPA (0.34 [0.01-0.67]; p = 0.044) were significantly and independently associated with a higher DAS28 during follow-up, after adjusting for confounding variables such as gender, age and treatment. In addition, those patients with elevated sIL-15 had a significantly higher risk of receiving intensive treatment (RR 1.78, 95% confidence interval 1.18-2.7; p = 0.007). Conclusions: Patients with EA displaying high baseline sIL-15 suffered a more severe disease and received more intensive treatment. Thus, sIL-15 may be a biomarker for patients that are candidates for early and more intensive treatmentThe work of Belen Díaz-Sánchez was supported by the RETICS Programme (Programa de Redes Temáticas de Investigación Colaborativa [Colaborative Research Thematic Network Programme]; RD08/0075 - RIER [Red de Inflamación y Enfermedades Reumáticas; Inflammation and Rheumatic Diseases Network]) from the Instituto de Salud Carlos III, Spain (URL: www.isciii.es) within the VI National Plan for I+D+I 2008–2011 (FEDER). The work of Isidoro González-Álvaro was in part supported by a grant for the Intensification of the Research Tasks in the National Health Care System from Instituto de Salud Carlos III, Spain. The consumables for measurements and data analysis were supported by a Fondo de Investigación Sanitaria grant (08/0754) from the Instituto de Salud Carlos II

    Cut-offs and response criteria for the Hospital Universitario la Princesa Index (HUPI) and their comparison to widely-used indices of disease activity in rheumatoid arthritis

    Get PDF
    Objective To estimate cut-off points and to establish response criteria for the Hospital Universitario La Princesa Index (HUPI) in patients with chronic polyarthritis. Methods Two cohorts, one of early arthritis (Princesa Early Arthritis Register Longitudinal PEARL] study) and other of long-term rheumatoid arthritis (Estudio de la Morbilidad y Expresión Clínica de la Artritis Reumatoide EMECAR]) including altogether 1200 patients were used to determine cut-off values for remission, and for low, moderate and high activity through receiver operating curve (ROC) analysis. The areas under ROC (AUC) were compared to those of validated indexes (SDAI, CDAI, DAS28). ROC analysis was also applied to establish minimal and relevant clinical improvement for HUPI. Results The best cut-off points for HUPI are 2, 5 and 9, classifying RA activity as remission if =2, low disease activity if >2 and =5), moderate if >5 and <9 and high if =9. HUPI''s AUC to discriminate between low-moderate activity was 0.909 and between moderate-high activity 0.887. DAS28''s AUCs were 0.887 and 0.846, respectively; both indices had higher accuracy than SDAI (AUCs: 0.832 and 0.756) and CDAI (AUCs: 0.789 and 0.728). HUPI discriminates remission better than DAS28-ESR in early arthritis, but similarly to SDAI. The HUPI cut-off for minimal clinical improvement was established at 2 and for relevant clinical improvement at 4. Response criteria were established based on these cut-off values. Conclusions The cut-offs proposed for HUPI perform adequately in patients with either early or long term arthritis

    On the interactions of human bone cells with Ti6Al4V thermally oxidized by means of laser shock processing

    Get PDF
    We investigated a Ti6Al4V alloy modified by means of laser peening in the absence of sacrificial coatings. As a consequence of the temperature rise during laser focusing, melting and ablation generated an undulated surface that exhibits an important increase in the content of titanium oxides and OH- ions. Human mesenchymal stem cells and osteoblasts cultured on the oxidized alloy develop noticeable filopodia and lamellipodia. Their paxillin-stained focal adhesions are smaller than in cells attached to the untreated alloy and exhibit a marked loss of colocalization with the ends of actin stress fibers. An important imbalance of phosphorylation and/or dephosphorylation of the focal adhesion kinase is detected in cells grown on the oxidized alloy. Although these mechanisms of adhesion are deeply altered, the surface treatment does not affect cell attachment or proliferation rates on the alloy. Human mesenchymal stem cells cultured on the treated alloy in media containing osteogenic inducers differentiate towards the osteoblastic phenotype to a higher extent than those on the untreated surface. Also, the specific functions of human osteoblasts cultured on these media are enhanced on the treated alloy. In summary, laser peening tailors the Ti6Al4V surface to yield an oxidized layer with increased roughness that allows the colonization and activities of bone-lineage cells.This work was supported by grants PI12/01698 from Fondo de Investigaciones Sanitarias (FIS, Spanish Ministry of Economy and Competitiveness, MINECO, Spain), S2013/MIT-2862 from Comunidad de Madrid, MAT2009-14695-C04-01-02-04 from the former Spanish Ministry of Science and Innovation (MICINN), MAT2012-37736-C05-03-05 and MAT2014-52905- REDT (MINECO) and GR10149 (Junta de Extremadura, Spain). LC was the recipient of predoctoral fellowship BES-2010-034989 from MICINN. LS is supported by grant award CP11/00022 (FIS). NV is supported by Program I2 from Comunidad de Madrid (Spain).Peer Reviewe

    Mechanically Induced Bacterial Death Imaged in Real Time: A Simultaneous Nanoindentation and Fluorescence Microscopy Study

    No full text
    Mechano-bactericidal nanomaterials rely on their mechanical or physical interactions with bacteria and are promising antimicrobial strategies that overcome bacterial resistance. However, the real effect of mechanical versus chemical action on their activity is under debate. In this paper, we quantify the forces necessary to produce critical damage to the bacterial cell wall by performing simultaneous nanoindentation and fluorescence imaging of single bacterial cells. Our experimental setup allows puncturing the cell wall of an immobilized bacterium with the tip of an atomic force microscope (AFM) and following in real time the increase in the fluorescence signal from a cell membrane integrity marker. We correlate the forces exerted by the AFM tip with the fluorescence dynamics for tens of cells, and we find that forces above 20 nN are necessary to exert critical damage. Moreover, a similar experiment is performed in which bacterial viability is assessed through physiological activity, in order to gain a more complete view of the effect of mechanical forces on bacteria. Our results contribute to the quantitative understanding of the interaction between bacteria and nanomaterials.This work was supported by the Spanish Ministerio de Ciencia, Innovacion y Universidades (MAT2015-66605-P, PGC2018-094802-B-I00, and SEV-2016-0686), and the Comunidad Autonoma de Madrid (PEJD-2016/IND-2774, S2017/BMD- ́3867). We thank Prof. Piet A. J. de Boer (Case Western Reserve University) for the gift of plasmid pDR122 (GFPMinD) and Prof. Pedro J. de Pablo (Universidad Autonoma de Madrid) for insightful discussions, and Dr. Pawel Hermanowicz for assistance with AtomicJ and the implementation of version 2.1.2

    Electrochemical analysis of the UV treated bactericidal Ti6Al4V surfaces

    No full text
    This research investigates in detail the bactericidal effect exhibited by the surface of the biomaterial Ti6Al4V after being subjected to UV-C light. It has been recently hypothesized that small surface currents, occurring as a consequence of the electron-hole pair recombination taking place after the excitation process, are behind the bactericidal properties displayed by this UV-treated material. To corroborate this hypothesis we have used different electrochemical techniques, such as electrochemical impedance spectroscopy (EIS), potentiodynamic polarization plots and Mott-Schottky plots. EIS and Mott-Schottky plots have shown that UV-C treatment causes an initial increase on the surface electrical conduction of this material. In addition, EIS and polarization plots demonstrated that higher corrosion currents occur at the UV treated than at the non-irradiated samples. Despite this increase in the corrosion currents, EIS has also shown that such currents are not likely to affect the good stability of this material oxide film since the irradiated samples completely recovered the control values after being stored in dark conditions for a period not longer than 24 h. These results agree with the already-published in vitro transitory behavior of the bactericidal effect, which was shown to be present at initial times after the biomaterial implantation, a crucial moment to avoid a large number of biomaterial associated infections. © 2013 Elsevier B.V. All Rights Reserved.Peer Reviewe

    Surface modification of Ti6Al4V by laser peenimng: Implications on the in vitro ion release, bacterial adhesion and biocompatibility

    No full text
    Trabajo presentado en el 25th European Conference on Biomaterials (ESB 2013), celebrado en Madrid (España), del 8 al12 de Septiembre 2013Fatigue is considered the main cause of mechanical failure of Ti6Al4V implants. Therefore, significant benefits might be obtained by surface treatments aimed to develop subsurface compressive residual stresses, hence enhancing fatigue strength. Laser peening (LP) of metallic biomaterials has recently emerged as a useful technique due to its capability to promote deeper compressive stresses than conventional grit blasting processesPeer reviewe
    corecore