140 research outputs found

    Complete Genome Sequence of the Novel Cellulolytic, Anaerobic, Thermophilic Bacterium Herbivorax saccincola Type Strain GGR1, Isolated from a Lab Scale Biogas Reactor as Established by Illumina and Nanopore MinION Sequencing

    Get PDF
    Pechtl A, Rückert C, Maus I, et al. Complete Genome Sequence of the Novel Cellulolytic, Anaerobic, Thermophilic Bacterium Herbivorax saccincola Type Strain GGR1, Isolated from a Lab Scale Biogas Reactor as Established by Illumina and Nanopore MinION Sequencing. Genome Announcements. 2018;6(6): e01493-17.The cellulolytic bacterium Herbivorax saccincola strain GGR1, which represents the type strain of this species, was isolated from the in vivo enriched cellulose-binding community of a lab scale thermophilic biogas reactor. Here, we report the complete genome sequence of H. saccincola GGR1T, the first isolated member of the genus Herbivorax

    Complete Genome Sequence of Herbinix luporumSD1D, a New Cellulose-Degrading Bacterium Isolated from a Thermophilic Biogas Reactor

    Get PDF
    Koeck DE, Maus I, Wibberg D, et al. Complete Genome Sequence of Herbinix luporumSD1D, a New Cellulose-Degrading Bacterium Isolated from a Thermophilic Biogas Reactor. Genome Announcements. 2016;4(4):e00687-16.A novel cellulolytic bacterial strain was isolated from an industrial-scale biogas plant. The 16S rRNA gene sequence of the strain SD1D showed 96.4% similarity to Herbinix hemicellulosilytica T3/55T, indicating a novel species within the genus Herbinix (family Lachnospiraceae). Here, the complete genome sequence of Herbinix luporum SD1D is reported

    Draft Genome Sequence of Propionisporasp. Strain 2/2-37, a New Xylan-Degrading Bacterium Isolated from a Mesophilic Biogas Reactor

    Get PDF
    Koeck DE, Maus I, Wibberg D, et al. Draft Genome Sequence of Propionisporasp. Strain 2/2-37, a New Xylan-Degrading Bacterium Isolated from a Mesophilic Biogas Reactor. Genome Announcements. 2016;4(3):e00609-16.The novel mesophilic bacterial strain Propionispora sp. 2/2-37 was isolated from an industrial-scale biogas plant. Comparative 16S rRNA gene sequencing revealed that the isolate constitutes a new subcluster within the order Selenomonadales. The 2/2-37 draft genome sequence was established and provides the genetic basis for application of this microorganism in degradation of biomass for bio-fuel production

    New Insights into Metabolic Properties of Marine Bacteria Encoding Proteorhodopsins

    Get PDF
    Proteorhodopsin phototrophy was recently discovered in oceanic surface waters. In an effort to characterize uncultured proteorhodopsin-exploiting bacteria, large-insert bacterial artificial chromosome (BAC) libraries from the Mediterranean Sea and Red Sea were analyzed. Fifty-five BACs carried diverse proteorhodopsin genes, and we confirmed the function of five. We calculate that proteorhodopsin-exploiting bacteria account for 13% of microorganisms in the photic zone. We further show that some proteorhodopsin-containing bacteria possess a retinal biosynthetic pathway and a reverse sulfite reductase operon, employed by prokaryotes oxidizing sulfur compounds. Thus, these novel phototrophs are an unexpectedly large and metabolically diverse component of the marine microbial surface water
    corecore