127 research outputs found

    Multi-Use Seismic Stations Offer Strong Deterrent to Clandestine Nuclear Weapons Testing

    Get PDF
    As the United States and other nations push for the signing of a Comprehensive Test Ban Treaty, representatives are meeting in Geneva this year to develop an International Seismic Monitoring System to verify compliance with the treaty's restrictions. In addition to the official monitoring system, regional networks developed for earthquake studies and basic research can provide a strong deterrent against clandestine testing. The recent release of information by the U.S. Department of Energy (DoE) on previously unannounced nuclear tests provides an opportunity to assess the ability of multi-use seismic networks to help monitor nuclear testing across the globe. Here we look at the extent to which the formerly unannounced tests were recorded and identified on the basis of publicly available seismographic data recorded by five seismic networks. The data were recorded by networks in southern Nevada and northern California at stations less than 1500 km from the Nevada Test Site (NTS), and two networks in the former Soviet Union at stations farther than 1500 km from the NTS

    Geoantineutrino Spectrum, 3He/4He-ratio Distribution in the Earth's Interior and Slow Nuclear Burning on the Boundary of the Liquid and Solid Phases of the Earth's Core

    Full text link
    The description problem of geoantineutrino spectrum and reactor antineutrino experimental spectrum in KamLAND, which takes place for antineutrino energy \~2.8 MeV, and also the experimental results of the interaction of uranium dioxide and carbide with iron-nickel and silicaalumina melts at high pressure (5-10 GP?) and temperature (1600-2200C) have motivated us to consider the possible consequences of the assumption made by V.Anisichkin and coauthors that there is an actinid shell on boundary of liquid and solid phases of the Earth's core. We have shown that the activation of a natural nuclear reactor operating as the solitary waves of nuclear burning in 238U- and/or 232Th-medium (in particular, the neutron- fission progressive wave of Feoktistov and/or Teller-Ishikawa-Wood) can be such a physical consequence. The simplified model of the kinetics of accumulation and burnup in U-Pu fuel cycle of Feoktistov is developed. The results of the numerical simulation of neutron-fission wave in two-phase UO2/Fe medium on a surface of the Earth's solid core are presented. The georeactor model of 3He origin and the 3He/4He-ratio distribution in the Earth's interior is offered. It is shown that the 3He/4He ratio distribution can be the natural quantitative criterion of georeactor thermal power. On the basis of O'Nions-Evensen-Hamilton geochemical model of mantle differentiation and the crust growth supplied by actinid shell on the boundary of liquid and solid phases of the Earth's core as a nuclear energy source (georeactor with power of 30 TW), the tentative estimation of geoantineutrino intensity and geoantineutrino spectrum on the Earth surface are given.Comment: 28 pages, 12 figures. Added text, formulas, figures and references. Corrected equations. Changed content of some section

    A digital seismogram archive of nuclear explosion signals, recorded at the Borovoye Geophysical Observatory, Kazakhstan, from 1966 to 1999

    Get PDF
    Seismologists from Kazakhstan, Russia, and the United States have rescued the Soviet-era archive of nuclear explosion seismograms recorded at Borovoye in northern Kazakhstan during the period 1966–1996. The signals had been stored on about 8000 magnetic tapes, which were held at the recording observatory. After hundreds of man-years of work, these digital waveforms together with significant metadata are now available via the project URL, namely http://www.ldeo.columbia.edu/res/pi/Monitoring/Data/ as a modern open database, of use to diverse communities. Three different sets of recording systems were operated at Borovoye, each using several different seismometers and different gain levels. For some explosions, more than twenty different channels of data are available. A first data release, in 2001, contained numerous glitches and lacked many instrument responses, but could still be used for measuring accurate arrival times and for comparison of the strengths of different types of seismic waves. The project URL also links to our second major data release, for nuclear explosions in Eurasia recorded in Borovoye, in which the data have been deglitched, all instrument responses have been included, and recording systems are described in detail. This second dataset consists of more than 3700 waveforms (digital seismograms) from almost 500 nuclear explosions in Eurasia, many of them recorded at regional distances. It is important as a training set for the development and evaluation of seismological methods of discriminating between earthquakes and underground explosions, and can be used for assessment of three-dimensional models of the Earth’s interior structure

    Large-scale blasting-down in opening-up the tyrnyauz deposit

    No full text
    • …
    corecore