14 research outputs found

    Improvement of source and wind field input of atmospheric dispersion model by assimilation of concentration measurements: Method and applications in idealized settings

    Get PDF
    AbstractThe problem of correcting the pollutant source emission rate and the wind velocity field inputs in a puff atmospheric dispersion model by data assimilation of concentration measurements has been considered. Variational approach to data assimilation has been used, in which the specified cost function is minimized with respect to source strength and/or wind field. The analyzed wind field satisfied the constraints derived from the conditions of mass conservation and linearized flow equations for perturbations from the first guess wind field. ‘Identical twin’ numerical experiments have been performed for the validation of the method. The first guess estimation errors of source emission rate and wind field were set to a factor of up to 10 and up to 6m/s respectively. The calculations results showed that in most studied cases an improvement of vector wind difference (VWD) error by about 0.7–1m/s could be achieved. The resulting normalized mean square error (NMSE) of concentration field was also reduced significantly

    Radiation source rate estimation through data assimilation of gamma dose rate measurements for operational nuclear emergency response systems

    Get PDF
    This paper presents an evaluation of an innovative data assimilation method that has been recently developed in NCSR Demokritos for estimating an unknown emission rate of radionuclides in the atmosphere, with real-scale experimental data. The efficient algorithm is based on the assimilation of gamma dose rate measured data in the Lagrangian atmospheric dispersion model DIPCOT and uses variational principles. The DIPCOT model is used in the framework of the nuclear emergency response system (ERS) RODOS. The evaluation is performed by computational simulations of dispersion of Ar-41 that was emitted routinely by the Australian Nuclear Science and Technology Organisation’s (ANSTO) previous research reactor, HIFAR, located in Sydney, Australia. In this paper the algorithm is evaluated against a more complicated Radiation source rate estimation through data assimilation 387 case than the others used in previous studies: There was only one monitoring station available each day and the site topography is characterised as moderately complex. Overall the estimated release rate approaches the real one to a very satisfactory degree as revealed by the statistical indicators of errors. © 2012 Inderscience Enterprises Ltd

    Chemical characterization of indoor and outdoor particulate matter (PM2.5, PM10) in Doha, Qatar

    No full text
    Τhe extreme weather conditions in Middle East Area led to the construction of tightly sealed, air conditioned buildings, characterized by indoor air quality deterioration. This study presents the results of chemical characterization of outdoor and indoor PM2.5 and PM10 in Doha city, over a two-month period including normal days and dust events, aiming at identifying the factors affecting the indoor air of an office building. The WHO guideline values were exceeded in 100% of the outdoor measurements. 49% of the days of the sampling campaign were characterized as non-dusty (PM10 < 200 µg m–3), 49% as minor-dusty (200 < PM10 < 1000 µg m–3) while in one case (2%) there was a major-dusty day (PM10 > 1000 µg m–3). The contribution of both dust and anthropogenic emissions sources is depicted in particles’ mass and chemical composition. The elevated –especially outdoor- levels of carbonate carbon indicate the presence of crustal matter originating from the surrounding crustal material. OC/EC values reveal possible combined contribution from secondary organic aerosol, trafficrelated sources and re-suspended dust. The influence of anthropogenic emissions is implied by the predominance of nitrate and sulfate ions, which constitute a substantial percentage of the particle mass. The crustal origin of particles is also depicted in metals. However, the higher enrichment factor values which may imply anthropogenic activities of both the outdoor and indoor environment were determined sequentially for Cd, Pb, As, Cu and Zn, suggesting the role of infiltration. Concluding, the indoor to outdoor relationship is significantly influenced by particles infiltration and penetration into the building mainly through the ventilation system and to a lesser extent, through windows or cracks in the building envelope. Although the low indoor to outdoor ratio underlies the predominance of outdoor levels compared to the indoor ones, there is positive correlation between indoor and outdoor PM, during the days that the building was open to the public and employees. © Taiwan Association for Aerosol Research
    corecore