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The problem of correcting the pollutant source emission rate and the wind velocity field
inputs in a puff atmospheric dispersion model by data assimilation of concentration mea-
surements has been considered. Variational approach to data assimilation has been used, in
which the specified cost function is minimized with respect to source strength and/or wind
field. The analyzed wind field satisfied the constraints derived from the conditions of mass
conservation and linearized flow equations for perturbations from the first guess wind
field. ‘Identical twin’ numerical experiments have been performed for the validation of
the method. The first guess estimation errors of source emission rate and wind field were
set to a factor of up to 10 and up to 6 m/s respectively. The calculations results showed that
in most studied cases an improvement of vector wind difference (VWD) error by about 0.7–
1 m/s could be achieved. The resulting normalized mean square error (NMSE) of concentra-
tion field was also reduced significantly.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Atmospheric Dispersion Models (ADMs) are frequently used in Emergency Response Systems (ERSs) for the prediction of
pollutants dispersion following accidental releases (e.g., in EU nuclear emergency response system RODOS, [1]). The quality
of the ADMs results obviously depends both on the complexity of the ADM and on accuracy of the input data. In cases of
nuclear emergencies the most important errors are related to the estimation of source emission rate and to the input mete-
orological data, [2]. Input data quality can often be improved by assimilation of available measurements (e.g., [3]). Varia-
tional approach is one of the most popular data assimilation methods [4], since it allows improving the quality of the
predicted results by adjusting the input data and simultaneously keeping physical balance between calculated fields.

A lot of work has been devoted to improvement of source function estimation by variational assimilation of the concen-
tration measurements. In the vast majority of works the meteorological parameters had been fixed (excellent review for such
works concerning global emission modelling can be found in [5] and examples of other works dealing with accidental release
modelling are [6–8]). This allowed reducing data assimilation problem to linear regression.

Since meteorological data can also significantly influence results of the ADMs prediction, the problem of improving the
meteorological input data by assimilating meteorological measurements in the Meteorological Pre-Processors (MPP) of the
ERSs has been also considered in several works (e.g., [32,10]). However, concentration measurements around the point of
. All rights reserved.
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release also contain information about the local meteorological fields and potentially could be used for the improvement of
the meteorological data through data assimilation.

An attempt to improve the wind field information with concentration measurements was firstly performed in [11]. That
work considered a very different in comparison to the present work atmospheric dispersion problem – modelling of the
planetary ozone distribution. The problem of estimation of one-dimensional wind field from concentration measurements
in Eulerian ADM has been solved with the extended Kalman Filtering approach (EKF), while source function was assumed
to be known. In the work [12] the same idea was used in context of data assimilation in regional atmospheric dispersion
problem (2D flow had been considered). In that work source function again was assumed to be known and ensemble Kalman
Filtering method was used together with Eulerian ADM. In the work [7], the problem of combined adjustment of wind vector
and source rate following the accidental release of contaminant was considered. However it was limited to the case of con-
stant wind and source in space and in time.

The objective of the present paper is to develop a data assimilation methodology for improving the wind field (variable in
space) and source function information with the use of concentration measurements in a Lagrangian–Eulerian (puff) atmo-
spheric dispersion model. The motivation for the model choice is that in present time puff models are widely used in emer-
gency response systems and in other studies of atmospheric dispersion. For instance, RIMPUFF model, [13], and puff version
of DIPCOT ADM, [14], are used in ERSs DERMA, [15], and RODOS, [1], CALPUFF model [16], which is recommended by Envi-
ronmental Protection Agency of USA for environmental risk studies and is widely used in different atmospheric dispersion
and emergency response research, e.g., [17], [18], and many others. However, despite such a wide use of puff models in prac-
tical and scientific applications, data assimilation methods with such models were rarely applied, especially in comparison
with a number of applications of data assimilation to Eulerian ADMs. A few familiar to authors studies concerning data
assimilation in puff models include [7,19,31,20]. Another important motivation for the model choice is that computational
algorithm of puff ADMs is in many respects close to that of Lagrangian ADMs, such as [14]. Since Lagrangian ADMs have
advantages over the Eulerian ADMs in predicting atmospheric dispersion close to source, [9], development of data assimi-
lation algorithms for them is a challenging task. However, stochastic nature of equations of particle movement must be ad-
dressed in order to apply data assimilation method developed here to Lagrangian ADM.

This work is an extension of the previous work [8] where data assimilation methodology has been developed for source
function estimation in puff ADM. In the present work the variational approach to data assimilation in puff ADM is extended
to deal with wind field estimation and the adjoint equations for puff ADM are derived. Since the numerical tests in the pres-
ent work were performed for the case of two-dimensional wind field with zero vertical velocity, the statement of the prob-
lem and methodology are described for the case of 2D wind field, comprising only horizontal components. Results of
numerical tests in idealized settings – constant wind speed and 2D flow – are presented.

2. Problem formulation

2.1. General

In puff ADM the continuous release of the pollutant is represented as a sequence of instantaneous releases –‘puffs’, (see,
e.g., [21]). Each puff i is characterized by the coordinates of position-vector �ri ¼ ðxi; yiÞ

T (henceforth superscript ‘‘T” means
transposition). In the considerations below the reference point of the Cartesian coordinate system is located at the ground
level and horizontally coincides with the release location. The axes x,y are directed horizontally. Puffs are transported by the
wind, hence the coordinates of the i-th puff are described by the differential equation: d�ri=dt ¼ �upð�riÞ, with initial condition
�rT

i ðt0
i Þ ¼ ð0;0Þ, where �upð�riÞ ¼ ðupð�riÞ; vpð�riÞÞ, is the wind vector at the point of puff location, t0

i is time of release, t0
i ¼ is, s is

time interval between releases of puffs. As the wind field is given on the grid of MPP (vectors �u; �v 2 RN , N = NxNy where Nx,Ny

are grid dimensions in x and y directions), some kind of interpolation is used to define velocity vector �upð�riÞ at the puff’s loca-
tion. Here the following 1/r2 interpolation scheme is used:
�upð�riÞ ¼ ~f ð�t;�riÞ ¼ ðf ð�u;�riÞ; f ð�v;�riÞÞT ;

f ð�u;�riÞ ¼ upð�riÞ ¼ 1
Wi

PN
k¼1

wikuk;

wik ¼ 1
r2

ik
þr2

0
;Wi ¼

PN
k¼1

wik; r2
ik ¼ ðxi � xG

k Þ
2 þ ðyi � yG

k Þ
2

ð1Þ
where �tT ¼ ð�uT ; �vTÞ is gridded wind field, uk are the components of vector �u, the coefficients wik define the weight of the kth
grid node depending on its squared distance to the puff i, ðxG

k ; y
G
k Þ are the coordinates of kth grid node and r2

0 is a small param-
eter to avoid discontinuity for zero distances. Thus, the equations of puffs’ motion are:
d�ri=dt ¼ ~f ð�t;�riÞ: ð2Þ
Each puff is characterized by a Gaussian-shaped spatial distribution of matter due to turbulent diffusion. Then the matter
concentration C at an arbitrary spatial point of the 3D domain (x,y,z) at time t is calculated as sum of contributions of all
puffs:
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ð3Þ
Here Np is the total (maximum) number of puffs, qi is the release rate corresponding to the time interval of appearance
of the ith puff, Hsrc

i is release height of ith puff, rxi,rzi are the parameters characterising the spatial distribution in the puff
and c(t,s,i) = H(t � i � s) is Heaviside step function which eliminates the influence of non-existing puffs. Total reflection of
the cloud from the underlying surface is assumed in (3). Relationship (3) also assumes absence of deposition and reactions.
In the present work rxi,rzi are parameterized by the Pasquill relationships, [21]:
rxðzÞi ¼ bxðzÞl
qxðzÞ
i

dli=dt ¼ ðu2ð�riÞ þ v2ð�riÞÞ1=2 ¼ e~f ð�t;�riÞ
; ð4Þ
here li is travel distance of the puff and qx,bx,qz,bz are parameters depending on the release height and stability index. Con-
sider the problem of modelling atmospheric dispersion on time interval (0,Tf). Assume that during the interval (0,T),T < Tf

measurements are available from K measurement stations located in spatial points �rk ¼ ðxk; yk; zkÞT , 1 6 k 6 K. Assume also
that the source of release acts during time interval (0,T). Then in Eq. (1): Np = [T/s], where square brackets means taking
an integer part. Denote concentration, measured at time t by the kth station as Co

kðtÞ. The available measurements during
interval (0,T) can be used to improve input parameters of the ADM and thus to improve the modeling results on the whole
interval of calculations (0,Tf). The adjustable parameters in the assimilation procedure compose the control vector �w of size
W. In the present work special attention is given to two special cases of control vectors. In the first case only the source func-
tion is adjusted: �wT ¼ ðq1; . . . ; qNp

Þ ¼ �qT , W = Np, while in the second case the velocity field is adjusted and �wT ¼ �tT , W = 2N. In
the third case which is considered in the present work both source function and wind field are adjusted and W = 2N + Np.

Now introduce the state vector of the model which consists of 2D position-vectors and travel distances of all puffs:
�sT ¼ ð�rT

1; l1;�rT
2; l2; . . . ;�rT

Np
; lNp Þ 2 R3Np . Evolution of different components of the state vector is described by equation:
d�s
dt
¼ f̂ ð�s; �tÞ; ð5Þ
where function f̂ is obviously constructed from abovementioned functions ~f ; e~f describing right parts in Eqs. (2) and (4) of
puff’s position-vector, and travel distance change. Then (3) defines function eCð�rk;�sÞ giving the relationship between the state
vector �s and the concentration at the measurement point k. The problem of data assimilation can be posed ([4]) as an optimal
control problem of minimizing the following objective function with respect to control vector �w, subject to constraints which
will be specified below:
J ¼ J1 þ J2

J1 ¼ ð�w� �wBÞT B�1ð�w� �wBÞ

J2 ¼
PNo

n¼1

PK
k¼1

1
r2

o
ðCo

kðtnÞ � eCð�rk;�sðtnÞÞÞ2 ¼ 1
r2

o
ðCo �Xð�wÞÞTðCo �Xð�wÞÞ

: ð6Þ
Here �wB is first guess estimation of the control vector, B is covariance matrix of the errors of the control vector, which
everywhere below is assumed to be diagonal: B ¼ diagð�rBÞ;rB ¼ ðr2

1B; . . . ;r2
WBÞ, with r2

iB being mean squared error of the

ith component of first guess estimation of the control vector, r2
o is mean squared error of the concentration measurements

assumed to be constant, No = T/so is number of time subintervals covering interval (0,T) (so is time interval between obser-
vations), vector Co 2 RNoK consists of concentrations Co(n,k), measured on each subinterval Dtn by k-th station. The elements
of CO are ordered sequentially as follows: Co

l ¼ Co
ðn�1ÞKþk ¼ Coðn; kÞ. The corresponding vector that consists of the calculated

concentrations at the K stations at the No time intervals (by model (3)–(5)) is denoted by CM ¼ Xð�wÞ, where function X is
formally introduced relating CM and �w. Error parameters entering (6) can reflect physical information concerning quality
of measurements and of a priori information about background estimations of adjusted parameters. Alternatively when such
estimations are not available they can become purely tuning parameters.

2.2. Source emission rate adjustment

In case of source function estimation ð�w ¼ �qÞ, the dependence of both parts of function (6) on �w is explicit and linear,
therefore CM ¼ G�w ¼ Xð�wÞ, where elements of matrix G are easily constructed from (3). Thus in case of �w ¼ �q, the minimiza-
tion of function (6) is a linear regression problem subject to constraints: �w P 0. Henceforth this is refereed as ‘‘problem 1”. In
case of problem 1, the corresponding background errors are assumed to be constant and denoted as:
r2

iB ¼ const ¼ r2
Bq;8i : 1 6 i 6 Np. Thus minimization problem solution depends in that case only on one parameter

r�1 ¼ r2
Bq=r2

o , which accounts for weight of regularization (background) term J1 in (6).
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2.3. Wind field adjustment

The case when w consists of wind field is referred below as ‘‘problem 2”. In this case the dependence of function eCð�rk;�sÞ on
�w is implicit, through dependence of the right parts of (5) on �w, describing evolution of the state vector components. Wind
field which minimizes function (6) has to satisfy additional constraints. This now will be considered in more detail.

The atmospheric dispersion module of modern ERSs consists of two main parts: meteorological pre-processor (MPP) and
ADM. The task of MPP is to calculate the gridded meteorological fields using input (a) prognostic meteorological fields cal-
culated by Numerical Weather Prediction (NWP) models on a coarser grid and (b) observations. That problem is solved with
the use of different physical parameterizations describing atmospheric processes together with linear interpolation and data
assimilation algorithms [22], [10]. The meteorological fields calculated by MPP’s are also subject to constraints, such as non-
divergence of the flow field, [22], and/or linearized equations describing flow perturbations due to underlying topography
[23]. In the present paper it is assumed that the meteorological field was already calculated by MPP. However corrections
to wind field due to assimilation of the concentration measurements are to be calculated and they have to satisfy the same
relationships which are used by the meteorological pre-processors. The resulting gridded wind field �tT ¼ ð�uT ; �vTÞ is to be
non-divergent:
D�t ¼ Dw ¼ 0

ðD�tÞl¼ði�1ÞNyþj � @u
@x þ @v

@y

� ����
x¼ihþxori;y¼jhþyori

; ð7Þ
where D is N � 2N matrix which approximates divergence operator at each node of the domain of calculations including
boundaries, (i,j) are indices of the grid node in x,y directions respectively, (xori,yori) are coordinates of the lower-left corner
of the grid and l is the row number.

The corrections dui = ui � ubi,i = 1,2 to the first guess estimation of the wind field ubi,i=1,2 = (ub,vb) induced by assimilation
of concentration measurements are expected to be small in comparison with the magnitude of first guess estimation of wind
velocity Ub ¼ ðu2

b þ v2
bÞ

1=2. Then linearized equations for perturbations of wind field used in some meteorological preproces-
sors (e.g., [23]) are valid and can be used as additional linear constraints on the minimization problem. For the case of hor-
izontal 2D flows equations from [23] are reduced to: ub (@dui/@x) + vb(@dui/@y) = (q�1) (@dp/@xi), where i = 1,2, x1 = x,x2 = y, q is
density and dp - pressure perturbation. After standard rearrangements to exclude pressure perturbations this gives:
@

@y
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@u
@x
þ @

@y
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@u
@y
� @

@x
ub
@v
@x
� @

@x
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@v
@y
¼ @
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@x
þ @
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� @
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ub
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vb
@vb

@y
: ð8Þ
Eq. (8) is approximated inside domain of calculations except boundaries and then can be written:
W�t ¼W�tb; ð9Þ
Here elements of (Nx � 2)(Ny � 2) � 2N matrix W can be easily specified in accordance to numerical approximation
scheme.

Thus, problem 2 of wind field correction with concentration measurements can be posed as problem of minimizing func-
tion (6) with respect to �w ¼ �tT subject to linear constraints (7) and (8).

3. Solution methodology

Since as problem 1 of source emission rate correction with assimilation measurements is a linear regression problem, a
variety of methods can be used for its solution. Here subroutine ‘‘lsqnonneg” from Matlab 7.0 Optimization Toolbox was
used, which finds the nonnegative solution that minimizes function (6) using an algorithm described in [24].

In case of problem 2, which is linearly constrained minimization; subroutine ‘‘fmincon” from MATLAB 7.0 Optimization
Toolbox was used, which in case of large scale optimization problem uses a subspace trust region method. It is based on the
interior-reflective Newton method described in [25] and [26]. In each iteration an approximate solution of a large linear sys-
tem is obtained using the preconditioned conjugate gradients method. Termination conditions are: k�wsþ1 � �wsk < TolX,
jJs+1 � Jsj < TolF, in which TolX, TolF are termination tolerances for control vector and cost function respectively and s is iter-
ation number. Values TolX = TolF = 10�12 were used everywhere in the present study. An important practical feature of this
subroutine is that it can use matrices representing constraints in (7) and (9) stored in sparse format. The algorithm requires
gradient of function (6) with respect to �w and approximation of nonzero stencil for Hessian matrix for approximate Hessian
calculations. The nonzero stencil for Hessian (i.e. set of indices, for which elements of Hessian are assumed to be nonzero) is
specified as: Stenc = {i,j:j = i _ j = i ± 1 _ j = i ± Ny}. Thus diagonal of Hessian is assumed to be nonzero together with those ele-
ments which correspond to linking of the l-th node of computational grid (l = (i � 1)Ny + j) with the neighbour nodes.

Gradient @J1=@
�w of first term in right part of function (6) is calculated straightforwardly. Second term of (6) is approxi-

mation of integral: J2 � 1
so

R T
0

PK
k¼1

1
r2

o
ðCo

kðtÞ � eCð�rk;�sðtÞÞÞ2dt ¼
R T

0 Uð�sÞdt. Therefore, following classical optimal control theory,
(e.g., [27]), @J2=@

�w can be calculated with the use of adjoint equations:
du
dt
þ f̂ T

�s u ¼ �U�sðtÞ;uðTÞ ¼ 0: ð10Þ
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Here vector u of size 3Np is solution of adjoint system of equations, U�s ¼ ðUs1 ; . . . ;Us3Np
Þ, f̂ �s is Jacobi matrix of function f̂

from (5), which is calculated by differentiating the relationships (1). Note that, due to the fact that puffs are not interacting, f̂ �s

has block structure with each block of size 3 � 3. Hence, solution of (10) can be performed separately for each block (each
puff). Then gradient @J2=@�t is calculated from the relationship (which takes into account also stationarity of the velocity
field):
@J2

@�t
¼
Z T

0
f̂ T

�tðtÞuðtÞdt: ð11Þ
In (11) f̂ �t is Jacobi matrix of function f̂ from (5), considered as a function of the velocity field, which is also calculated by
taking appropriate derivatives of relationships (1). All Jacobi matrices in (10) and (11) are to be calculated on puff trajectories
from forward model run. Hence, in calculating the derivative @J=@�w, during forward run of the model (i.e., solution of Eq. (5)
for state vector and concentration calculations with (3)), the right part for adjoint equations U�s is calculated, puff’s trajecto-
ries are stored, and in backward run adjoint equations are solved and gradient itself is calculated. Discretizations of (10) and
(11) are performed following the approach from [4] (Chapter 21), so that the resulting solution gives gradient of discretized
cost function (6).

When control vector �wT ¼ ð�qT ; �tTÞ consists of both – source function components and velocity field, the problem of min-
imization of cost function (6) (problem 3) is solved in the following iteration process:
s ¼ 0; �q ¼ �qb; �t ¼ �tb;

whileðs < smaxÞdo
s ¼ sþ 1;

solve problem 1; update �q;

solve problem 2; update �t;

enddo

ð12Þ
Thus in the overall minimization procedure problems 1 and 2 are solved by turns. Iteration process (12) is sort of descent
algorithm and always converges to stationary point. However, convergence of (12) to global solution of the problem 3, as
well as convergence of fmincon to global solution of problem 2 are not guaranteed as far as cost functions are non-convex
in those cases.

Note, that presented statement of the problem considers simple puff model. In more complex puff models, such as [16]
turbulent dispersion of matter is accounted by solving separate equations for rx,ry,rz instead of parameterization (4). The
presented statement of the problem and solution methodology could be straightforwardly applied for such cases by includ-
ing rx,ry,rz in state vector �s instead of puff travel distance.

4. Calculation results

In this section results of two calculation cases are presented. In the first case wind velocity was considered as constant in
space, i.e., the velocity field was not specified on the grid, but was represented by 2 parameters - u and v components of wind
vector. All derivations from the previous section are applicable to that case when N = 1 (thus, dimension of control vector �w
in problem 2 is 2). This case is important, since it most clearly demonstrates the importance of the wind vector correction for
better estimation of the source function. In the second case, which is much more complex than the first due to the problem
size, the correction of 2D wind field is considered.

In all cases the so-called ‘‘identical twin” experiments ([28]) have been used to evaluate the performance of the data
assimilation methodology, due to lack of real experimental data. Artificial ‘‘concentration measurements” have been gener-
ated by running the model with a source term and a wind field that are considered as ‘‘true” (the ‘‘truth” run). Then the mod-
el was run again (assimilation run), assuming that the source term and wind field are unknown. ‘‘First guesses” of the source
term and wind field were used and the previously generated artificial concentration measurements were assimilated, with
the aim to evaluate the ‘‘true” parameters. Particular details of each test case are given below. In addition, to overcome the
tendency of identical twin experiments to err on the optimistic side ([28]), the observation error has been simulated by add-
ing noise to the synthetic observations.

4.1. Results with constant wind speed

In that case the true values of the velocity components in all runs were the same: utrue = 10 m/s, vtrue = 0. Runs with dif-
ferent true source functions had been performed. The release duration in all cases was: T = 1h. The modelling duration in all
cases was: Tf = 2h. Three variants of source functions were considered. The first and second true source functions were con-
stant: q1true(t) = 106 Bq/s, q2true(t) = 108 Bq/s. The third true source function first linearly diminished from q3true(0) = 107 Bq/s
to q3true(T/4) = 106 Bq/s, then linearly increased to q3true(3T/4) = 108 Bq/s, and then again linearly diminished to the initial
value: q3true(T) = q3true(0) = 107 Bq/s. The first guess estimation of the wind velocity in assimilation runs was the following:
u0guess = 7 m/s, v0guess = 2 m/s. In all cases the first guess of the source function was the same: q0guess(t) = 107 Bq/s. Thus, it
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differed by an order of magnitude from the all three kinds of true source functions. Such errors in source function and wind
estimations are realistic in operational practice of real-time ERSs, [2]. Note, that despite the fact, that q1true, q2true were con-
stant functions, in the assimilation run that information was not available, i.e., source function was not described by one
parameter, but was approximated by the vector of the size Np. The coordinates of the measuring stations (i.e., points, from
which output from the truth runs was used in assimilation runs) were situated at the level z = 0, and had the following hor-
izontal coordinates: (x1out,y1out) = (104m,0), (x2out,y2out) = (7071m,7071m), (x3out,y3out) = (7071m, � 7071m). For each truth run
a series of assimilation runs have been performed with different values of r. The best value of the regularization parameter r
in operational practice, when true concentration field is unknown can be calculated by heuristics techniques, such as [29].
However trial and error was used in the present study to find the best value of r because true concentration field was known
and because it is easier by computational time. The time interval between measurements was: s0 = 600 s. Other parameters
were the same in truth and assimilation runs: x0 = y0 = 0, Hsrc

i ¼ 10m,"i:1 6 i 6 Np, s = 300s, py = 1.503, qy = 0.833, py = 0.151,
qz = 1.219.

The quality of the results was evaluated by the normalized mean square error (NMSE) and fractional bias (FB), calculated
with the use of output concentration fields (in truth and assimilation runs) on the computational grid, which covered spatial-
time domain (0 6 x 6 30 km) � (�20 km 6 y 6 20 km) � (0 6 t 6 2h.) with spatial horizontal steps 1 km, and with time step
600 s. In total more then 4000 values were used for comparisons of truth and assimilation runs, while only from 6 to 18 mea-
sured values were used in assimilation procedure. Thus evaluation was based on global error indicators.

Table 1 presents minimum by r achieved calculated values of NMSE and FB for different assimilation series (cases). Brief
description of each case is given in column ‘description’ of the Table 1. In cases 1-3 wind velocity in assimilation run was
equal to the true value. Therefore, the errors obtained in those cases were much less then the errors in more complex cases
4-9, when initial wind velocity was erroneous. Results of cases 4-5, 6-7, 8-9 show the influence of adjustment of wind veloc-
ity on the accuracy of the results. In all cases 5, 7,9, NMSE with adjustment of wind velocity together with source function is
by the factor of 2-200 less then NMSE in cases 4, 6, 8, with adjustment of the only source function. In the majority of cases FB
also diminishes with adjustment of wind velocity, though its reduction is not so significant as that of NMSE.

Fig. 1 shows example of source functions – true, first guess and adjusted for cases 8 and 9. The effect of the wind speed
correction in assimilation procedure on the adjustment of the source function is evident, which confirms results following
from Table 1. Similar pictures were obtained for the rest of the runs.

4.2. Results with two dimensional flow

Common parameters of truth and assimilation runs were the following. Velocity field was calculated on the grid with
N = Nx � Ny = 40 � 40 cells covering spatial domain (0 6 x 6 40 km) � (�40 km 6 y 6 40 km) with spatial horizontal steps
2 � 2 km. The release duration was T = 1h. Model Eq. (5) were integrated with time step sm = 100s and concentrations cal-
culated with the same time step so = sm. Other parameters were the following: Hsrc

i ¼ 10m;8i : 1 6 i 6 Np, py = 1.503,
qy = 0.833, py = 0.151, qz = 1.219.

The truth run in that case was characterized by the following conditions. Wind field was characterized by rotation around
point with coordinates r0 = (x0,y0) = (0, � 5 � 104 m.) with angular velocity x = 2 � 10�41/s, so that: utrue(x,y) = x(y � y0),
vtrue(x,y) = �x(x � x0). At the point of release, the wind was blowing in x direction with magnitude 10 m/s, and the resulting
vector field is presented at Fig. 2-a.

The assimilation runs were characterized by the following conditions. The modelling duration was Tf = 2h. The first guess
wind field (Fig. 2-b) was constant in space and was equal to true wind vector in the point of release: u0guess(x,y) = utrue(0,0),
v0guess(x,y) = vtrue(0,0). This condition reflects the fact, that in operational practice of many ERSs meteorological measure-
ments are usually available at the point of potential release. That information can be used by meteorological pre-processors
together with NWP data in data assimilation procedure, to construct the wind field, which can be locally very close to the
observed, [10]. However the overall error of such constructed first guess wind field in present case was quite large. The
Table 1
Results of calculations corresponding to Section 4.1. Column ‘‘No” is the case number of assimilation run; format of column ‘‘Description” is the following: exact
(Exact) or erroneous (Err.) initial wind velocity was used in assimilation run/number of true source function used to calculate observations/ composition of
control vector (‘q’ means adjustment of only the source function, ‘q+uv’– adjustment of source function and velocity components); next columns contain NMSE
and FB obtained before assimilation denoted as ‘‘Backgr” and with assimilation (‘‘assim”). Zero values of errors corresponds to values < 10�3.

No. Description NMSE Backgr. FB Backgr. NMSE assim FB assim

1 Exact/src No1/q 125.82 �1.63 0 0
2 Exact/src No2/q’ 125.82 1.6 0 0
3 Exact./src No3/q 70.46 �1.11 0 0
4 Err./src No1/q 89.82 �1.52 11.0 �0.006
5 Err./src No1/q+uv 89.82 �1.52 0.58 0.062
6 Err./src No2/q 290.66 �1.66 10.8 �0.094
7 Err./src No2/q+uv 290.66 �1.66 1.17 0.043
8 Err./src No3/q 52.53 �0.88 19.6 0.057
9 Err./src No3/q+uv 52.53 �0.88 5.34 0.069



Fig. 1. Source functions: true, first guess and after assimilation runs. Case numbers correspond to the column ‘No’ of the Table 1. Case No 8 correspond to
adjustment of source function only; case No 9 – to adjustment of both source function and wind velocity components.

Fig. 2. Velocity fields: (a) true; (b) first guess; (c) after assimilation run (case 1 of Table 2). Length of arrow is proportional to magnitude of velocity. True
velocity in the point of release – 10 m/s.
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so-called ‘vector wind difference’ error indicator was used for estimation of the wind field error, which simultaneously re-
flects error in magnitude and in wind direction, [30]:
vwd ¼ ððu� utruthÞ2 þ ðv � v truthÞ2Þ1=2
D E

; ð13Þ
where triangular brackets indicate arithmetic average. Thus, error of first guess wind field was: vwd0guess = 6 m/s which is
comparable to errors, that can occur in operational meteorological practice [30].

The measurement points were located at three concentric circles around the release point with radiuses Rm
1 ¼ 5 km,

Rm
2 ¼ 10 km, Rm

1 ¼ 30 km and at each circle they were distributed with uniform angular step d/ which varied in different
tests from 3� to 30� starting from 0� direction, which coincided with positive direction of axis x.

The following errors parameters of function (6) were set in all cases. Parameter r2
0 in all cases was set to r2

0 ¼ 10�5. In case
of adjustment of wind field (problem 2) error of the background field �rB ¼ �rBu was defined by the following relationship:
1=r2

Bui ¼ ð1=r2
uobsÞ expð�R2

l =R2
inf lÞ þ ð1=r2

u0Þ. Here the first term accounts for decrease of error closer to observation (release)
point, Rl is distance from l-th grid node to release point, Rinfl is radius of influence of wind observation, which was taken
Rinfl = 5 km, r2

uobs is squared error of observation assumed to be small enough to nudge velocity in the release point to mea-
sured value ðr2

uobs ¼ 10�4m2=s2Þ and r2
u0 is squared error of background field uninfluenced by observation (far from release

point) which varied in different tests. When source function was adjusted, parameter r2
Bq was set to zero.

In the same way as in Section 4.1 results of assimilation were evaluated by global error estimations - NMSE and FB which
were calculated on the basis of truth and predicted concentrations on the spatial grid, coinciding with the velocity grid and
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with temporal resolution coinciding with model integration step. Thus in total about 5 � 104 values were used in NMSE
calculations.

Consider first special case, when only wind field was adjusted. Source function in that case was constant q0guess(t) =
qtrue(t) = 107 Bq/s. Results of the corresponding tests are presented in Table 2. Fractional bias error of first guess and assim-
ilation runs in all tested cases was small (FB < 10�2) and thus is not presented. The run with first guess estimation of velocity
field led to NMSE0guess = 1.3, VWD0guess = 6 m/s. As it can be seen from Table 2, despite the fact, that source function was
known, it is rather difficult to find minimum of cost function due to very high dimension of the problem, and convergence
to good solution was possible only when both constraints (7) (non-divergence) and (8) (linearized flow) were used. In con-
trast, when constraints were not used (case 3) or when only non-divergence constraint was used (case 2) final analyzed
velocity and concentration fields were worse then first guess estimation (VWD and NMSE increase). As follows from case
4, the quality of the first guess velocity field is crucial for finding an appropriate solution. When error of the background field
was very large, algorithm converged to completely inappropriate solution with VWD = 500, though in that case not only cost
function was reduced, but even global error estimate NMSE was essentially reduced by the factor of 10. Cases 5-7 demon-
strate sensitivity of the results with respect to angular resolution of observation network. With decreasing the resolution
(increasing d/ from 3� to 30�) improvement in both, NMSE and FB was reached, however effectiveness of assimilation 1nmse

measured as relative decrease: 1nmse = NMSE0guess/NMSEassim fell from 65 to 2.6. Effectiveness 1vwd, measured as
1vwd = VWD0guess/VWDassim decreased significantly slower from 1.4 to 1.13. Such behaviour can be attributed to the fact that
NMSE is most sensitive to errors in velocities close to the source of release, where concentrations are larger. From the other
hand the fact that values of 1vwd are significantly lower then 1nmse demonstrates high sensitivity of NMSE to accuracy of veloc-
ity field.

Figs. 2 and 3 presents wind vectors and concentration distributions in true run, in first guess run and in assimilation run
(case 1 from Table 2). The effect of data assimilation on both distributions is evident from these Figures. An interesting fea-
ture observed from Fig. 2 and 3 is that velocity field is modified not only in the area of presence of cloud, but in the entire
domain, even in the areas outside the cloud extent. This is possible only due to the influence of constraints (7) and (8).

Now consider the more complex problem, when both source function and wind field are unknown. Conditions of all
experiments were almost the same as in previous case. The following true source functions qtrue(t) were used. At zero time:
qtrue(0) = 107 Bq/s, then it linearly increased to: qtrue(T/4) = aqtrue(0), then it linearly decreased to qtrue(3T/4) = (1/a)qtrue(0),
and then again linearly increase to the initial value: qtrue(T) = qtrue(0). First guess source function was constant and equal:
q0guess(t) = qtrue(0). Cases with a = 10 and a = 2 were considered. In that series of experiments the ‘measured’ concentrations
were perturbed with white Gaussian noise to account for measurement uncertainty. Squared standard deviation of Gaussian
Table 2
Results of assimilation of concentration measurements for correction of wind field with known true source function. Errors of first guess run are:
NMSE0guess = 1.3, VWD0guess = 6 m/s. Column ‘‘No” is case number, ‘‘Constraint”– constraint type according to formula numeration in text, 1=r2

u0 – inverse
squared error of background velocity field, d/ - angular resolution of observational network, NMSE and vector wind difference error (VWD, (13)) after
assimilation are presented in the last 2 columns.

No. Constraint 1=r2
u0 (m/s)�2 d/(�) NMSE assim VWD (m/s), assim

1 (7) + (8) 2.5 3 0.02 4.3
2 (7) 2.5 3 5.0 5.9
3 - 2.5 3 1.52 6.0
4 (7) + (8) 0 3 0. 501
5 (7) + (8) 2.5 6 0.05 4.3
6 (7) + (8) 2.5 15 0.34 4.52
7 (7) + (8) 2.5 30 0.5 5.3

Fig. 3. Near – ground concentration distributions after 1 hour after start of release: (a) true; (b) first guess; (c) after assimilation run (case 1 of Table 2).
Isolines of concentrations correspond to: 10�4 Bq/m3, 10�3 Bq/m3, 10�2 Bq/m3, 10�1 Bq/m3.



Table 3
Results of assimilation of concentration measurements for correction of both source function and wind field. Two types of source function with a = 10 and a = 2
are presented (see description in Section 4.3). Corresponding NMSE of first guess runs are presented in second column. Vector wind difference error (VWD, (13))
of first guess run in all cases was the same: VWD0guess = 6 m/s; d/ - is angular resolution of observational network. NMSE and VWD after assimilation of ‘true’
concentrations are presented in 5 -6 columns, and results of assimilation of perturbed with Gaussian noise ‘true’ concentrations are presented in the last 2
columns.

No. a NMSE Backgr. d/(�) NMSE assim. VWD (m/s), assim. NMSE assim. (perturbed) VWD (m/s), assim. (perturbed)

1 10 3271 3 0.41 4.9 0.3 5.04
2 10 3271 6 0.34 4.6 0.10 4.52
3 10 3271 15 0.66 4.9 0.69 5.15
4 10 3271 30 8.6 9.4 12.0 9.16
5 2 129 3 0.02 4.3 0.03 4.35
6 2 129 6 0.03 4.3 0.03 4.3
7 2 129 15 0.9 4.4 0.77 4.4
8 2 129 30 5 8.0 6.1 8.2

Fig. 4. Source functions: true, first guess and after assimilation run in case 4 of Table 3.
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distribution was equal to abovementioned assumed mean squared error of observations r2
o . Results of assimilation of both

perturbed and unperturbed concentrations are presented in Table 3. As it can be seen from Table 3, perturbation of concen-
tration measurements with Gaussian noise didn’t essentially influence the results of assimilation. When angular resolution
of observation network was coarse (d/ = 30�) in both cases - a = 10 and a = 2 decrease in NMSE was reached while VWD in-
creased. Increase in VWD occurred because relatively small errors in adjusted source function (Fig. 4) lead to incorrect
adjustment of velocity field. Thus improvement in NMSE was reached due to adjustment of source function only. However,
when angular resolution of observation network was sufficiently small (d/ 6 15�) for both a = 10 and a = 2 decrease in both
concentration errors NMSE and wind field error VWD was reached.

5. Conclusions

In present work the methodology of combined adjustment of source function and wind field inputs of the puff Atmo-
spheric Dispersion Model (ADM) through data assimilation of concentration measurements has been developed. Variational
approach to data assimilation problem was adopted, in which cost function, characterising difference of predicted and mea-
sured concentrations was minimized with respect to either wind field and source function. Resulting wind field solution is
subject to linear equality constraints following from nondivergence and linearized flow conditions. Adjoint equations for puff
ADM are derived and solved numerically to find gradient of cost function with respect to wind field. The minimization prob-
lem is solved with the use of Matlab 7.0 Optimization Toolbox.

‘Identical twin’ numerical experiments have been performed for two kinds of idealized conditions: 1) case of constant in
time and in space wind velocity (0D wind field); and 2) case of 2D wind field. After truth run had been performed, errors in
source function and/or wind field had been introduced in first guess run. The error of first guess source function varied from
zero to 1000% with respect to true source function. Vector wind difference error (VWD) of wind field was 3.6 m/s in first case
and 6 m/s – in second. Those errors then had been reduced through the data assimilation procedure.

Results of the first case show very essential increase of accuracy of the resulting concentration field when wind velocity
was corrected together with source function in comparison with the case when only source function had been corrected.
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Resulting normalized mean square error NMSE reduced by the factor of from 2 to 200 under the influence of wind field cor-
rection. Second case was much more complex in comparison to the first one due to essential increase in the size of minimi-
zation problem (by 3 orders of magnitude). Two main sets of numerical tests were performed in the second case. In the first
set true source function was known and only wind field was adjusted, while in the second set both source function and wind
field were adjusted.

It was found that decrease in wind field error is possible only when suitable set of constraints is used (both non-diver-
gence and linearized flow relationships ). When constraints were not used, or when only non-divergence constraint was
used improvement in wind field error was not possible. Quality of the first guess wind field was crucial for wind field cor-
rection, especially in the vicinity of release, where concentrations are large. When large error of first guess wind field was
assumed, correction was also not possible. Provided that the abovementioned conditions were fulfilled in tests with
known source function VWD reduced by about 1.7 � 0.7 m/s and NMSE- by a factor 65 � 2.6 depending on angular reso-
lution of the observational network, which varied from 3 to 30 decimal degrees. In the second set of tests, when relatively
large errors (by a factor of 10) in source function were introduced level of reduction of NMSE was in all cases very large
(by a factor of > 100) due to adjustment of source function. However reduction of VWD in that case by about 1.7 � 1.1 m/s
was achieved for angular resolutions of observational network: 3� 6 d/ 6 15�. For larger angular resolution (d/ = 30�) VWD
increased.

The presented methodology can be extended to cope with more realistic 3D flows and also for other kinds of problems,
such as source location and plume rise estimations. Of course more tests will be needed in such cases.
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