16 research outputs found
Conformation-regulated mechanosensory control via titin domains in cardiac muscle
The giant filamentous protein titin is ideally positioned in the muscle sarcomere to sense mechanical stimuli and transform them into biochemical signals, such as those triggering cardiac hypertrophy. In this review, we ponder the evidence for signaling hotspots along the titin filament involved in mechanosensory control mechanisms. On the way, we distinguish between stress and strain as triggers of mechanical signaling events at the cardiac sarcomere. Whereas the Z-disk and M-band regions of titin may be prominently involved in sensing mechanical stress, signaling hotspots within the elastic I-band titin segment may respond primarily to mechanical strain. Common to both stress and strain sensor elements is their regulation by conformational changes in protein domains
Sponge spicules as blueprints for the biofabrication of inorganic–organic composites and biomaterials
While most forms of multicellular life have developed a calcium-based skeleton, a few specialized organisms complement their body plan with silica. However, of all recent animals, only sponges (phylum Porifera) are able to polymerize silica enzymatically mediated in order to generate massive siliceous skeletal elements (spicules) during a unique reaction, at ambient temperature and pressure. During this biomineralization process (i.e., biosilicification) hydrated, amorphous silica is deposited within highly specialized sponge cells, ultimately resulting in structures that range in size from micrometers to meters. Spicules lend structural stability to the sponge body, deter predators, and transmit light similar to optic fibers. This peculiar phenomenon has been comprehensively studied in recent years and in several approaches, the molecular background was explored to create tools that might be employed for novel bioinspired biotechnological and biomedical applications. Thus, it was discovered that spiculogenesis is mediated by the enzyme silicatein and starts intracellularly. The resulting silica nanoparticles fuse and subsequently form concentric lamellar layers around a central protein filament, consisting of silicatein and the scaffold protein silintaphin-1. Once the growing spicule is extruded into the extracellular space, it obtains final size and shape. Again, this process is mediated by silicatein and silintaphin-1, in combination with other molecules such as galectin and collagen. The molecular toolbox generated so far allows the fabrication of novel micro- and nanostructured composites, contributing to the economical and sustainable synthesis of biomaterials with unique characteristics. In this context, first bioinspired approaches implement recombinant silicatein and silintaphin-1 for applications in the field of biomedicine (biosilica-mediated regeneration of tooth and bone defects) or micro-optics (in vitro synthesis of light waveguides) with promising results
Poly-Ig tandems from I-band titin share extended domain arrangements irrespective of the distinct features of their modular constituents
The cellular function of the giant protein titin in striated muscle is a major focus of scientific attention. Particularly, its role in passive mechanics has been extensively investigated. In strong contrast, the structural details of this filament are very poorly understood. To date, only a handful of atomic models from single domain components have become available and data on poly-constructs are limited to scarce SAXS analyses. In this study, we examine the molecular parameters of poly-Ig tandems from I-band titin relevant to muscle elasticity. We revisit conservation patterns in domain and linker sequences of I-band modules and interpret these in the light of available atomic structures of Ig domains from muscle proteins. The emphasis is placed on features expected to affect inter-domain arrangements. We examine the overall conformation of a 6Ig fragment, I65-I70, from the skeletal I-band of soleus titin using SAXS and electron microscopy approaches. The possible effect of highly conserved glutamate groups at the linkers as well as the ionic strength of the medium on the overall molecular parameters of this sample is investigated. Our findings indicate that poly-Ig tandems from I-band titin tend to adopt extended arrangements with low or moderate intrinsic flexibility, independently of the specific features of linkers or component Ig domains across constitutively- and differentially-expressed tandems. Linkers do not appear to operate as free hinges so that lateral association of Ig domains must occur infrequently in samples in solution, even that inter-domain sequences of 4-5 residues length would well accommodate such geometry. It can be expected that this principle is generally applicable to all Ig-tandems from I-band titin