2,828 research outputs found

    Neutron electric form factor at large momentum transfer

    Get PDF
    Based on the recent, high precision data for elastic electron scattering from protons and deuterons, at relatively large momentum transfer Q2Q^2, we determine the neutron electric form factor up to Q2=3.5Q^2=3.5 GeV2^2. The values obtained from the data (in the framework of the nonrelativistic impulse approximation) are larger than commonly assumed and are in good agreement with the Gari-Kr\"umpelmann parametrization of the nucleon electromagnetic form factors.Comment: 11 pages 2 figure

    On the measurement of χ2(3P2)\chi_2(^3P_2) quarkonium state in the processes e++epˉ+pe^++e^-\to \bar p+p and pˉ+pe++e\bar p+p\to e^++e^-

    Full text link
    The intermediate quarkonium state χ2(3P2)\chi_2(^3P_2) in electron-positron annihilation to proton and antiproton as well as in antiproton-proton annihilation to electron and positron can produce backward-forward asymmetry, when populated through two photon exchange. We use the dispersion relation method, which permits to express the asymmetry in terms of partial widths of quarkonium decay. The asymmetry dependence on the center of mass energy in the range near the resonance is presented. The comparison with a similar effect in these reactions with the neutral ZZ-boson in the intermediate state is given. We show that these effects are 103\le 10^{-3}. The main source of asymmetry is of pure QED origin (102\sim 10^{-2}) which arises from the interference between initial and final state real photon emission

    Comments on ISR method in modern experiment and influence of final state radiation

    Full text link
    We study the effect of final state radiation in the process e++epˉ+pe^++e^- \to \bar p+ p, in the kinematical conditions of BaBar and BESIII experiment. We show that this effect could be large, in particular in the low xx region (xx is the photon energy fraction) and should be taken into account.Comment: 8 pages, 5 figure

    Proton electron elastic scattering and the proton charge radius

    Full text link
    It is suggested that proton elastic scattering on atomic electrons allows a precise measurement of the proton charge radius. Very small values of transferred momenta (up to four order of magnitude smaller than the ones presently available) can be reached with high probability.Comment: 4 pages, 4 figure

    Survival probability in Generalized Rosenzweig-Porter random matrix ensemble

    Full text link
    We study analytically and numerically the dynamics of the generalized Rosenzweig-Porter model, which is known to possess three distinct phases: ergodic, multifractal and localized phases. Our focus is on the survival probability R(t)R(t), the probability of finding the initial state after time tt. In particular, if the system is initially prepared in a highly-excited non-stationary state (wave packet) confined in space and containing a fixed fraction of all eigenstates, we show that R(t)R(t) can be used as a dynamical indicator to distinguish these three phases. Three main aspects are identified in different phases. The ergodic phase is characterized by the standard power-law decay of R(t)R(t) with periodic oscillations in time, surviving in the thermodynamic limit, with frequency equals to the energy bandwidth of the wave packet. In multifractal extended phase the survival probability shows an exponential decay but the decay rate vanishes in the thermodynamic limit in a non-trivial manner determined by the fractal dimension of wave functions. Localized phase is characterized by the saturation value of R(t)=kR(t\to\infty)=k, finite in the thermodynamic limit NN\rightarrow\infty, which approaches k=R(t0)k=R(t\to 0) in this limit.Comment: 21 pages, 12 figures, 61 reference

    Sun-photometric measurements of atmospheric turbidity variations caused by the Pinatubo aerosol cloud in the Himalayan region during the summer periods of 1991 and 1992

    Get PDF
    Measurements of direct solar irradiance were taken episodically on two days of September 1990 and regularly in the summer periods from July to October 1991 and from mid-July to mid-August 1992 at the Pyramid Laboratory (5050 m a.m.s.l.) situated at the foot of Mt. Everest (Nepal), using two examples of the Volz multispectral sunphotometer, model A. These sun-photometric measurements were analysed in terms of the Bouguer-Lambert-Beer law in order to determine the values of aerosol optical thickness at the three sun-photometric window-wavelengths. Examining these spectral series in terms of the well-known Ångström formula, the best-fit values of turbidity parameters a and b were calculated with great accuracy. From the measurements taken in September 1990, we found values of the aerosol optical thickness in good agreement with the mean values of the background aerosol optical depth measured at the Mauna Loa Observatory (Hawaii) during the four-year period from 1988 to 1991. The spectral values of the aerosol optical thickness determined during the summer of 1991 show that the mean daily values of parameter b increased abruptly from about 0.06 to more than 0.16 from July 26 to 28, 1991, and then varied between 0.09 and 0.16 during the rest of the measurement period. Simultaneously, parameter a was found to decrease from more than 1.25 to 0.39 towards the end of July and to vary between 0.40 and 0.78 during September. These large variations of both atmospheric turbidity parameters have been attributed to the growth of the aerosol particles and to the consequent changes in the size distribution curve of the Pinatubo aerosol particles. Analysing the variations of the stratospheric aerosol optical depth in terms of particle polydispersions consisting of a linear combination of a background aerosol monomodal model and a bimodal model representing the Pinatubo fresh aerosol particle size distribution, the vertical mass loading of stratospheric aerosol particles was estimated to vary between 0.037 and 0.047 g m22 from July 24 to 27 and to increase to values ranging between 0.048 and 0.074 g m22 during the rest of summer 1991, presenting a mean value of (0.063 6 0.009) g m22 for the two-month period. The measurements taken in summer 1992 show that parameter b ranged between 0.08 and 0.12, while parameter a was found to vary between 0.23 and 0.73. The stratospheric aerosol depth values were analysed through a best-fit procedure based on a linear combination of a background model of small aerosol particles and a trimodal model consisting of aged volcanic aerosol particles. Following this procedure, the vertical mass loading of Pinatubo aerosol particles was found to vary between 0.043 and 0.057 g m22 during summer 1992, the mean value being evaluated as equal to (0.047 6 0.004) g m22
    corecore