134 research outputs found

    Bulk viscosity of superfluid neutron stars

    Full text link
    The hydrodynamics, describing dynamical effects in superfluid neutron stars, essentially differs from the standard one-fluid hydrodynamics. In particular, we have four bulk viscosity coefficients in the theory instead of one. In this paper we calculate these coefficients, for the first time, assuming they are due to non-equilibrium beta-processes (such as modified or direct Urca process). The results of our analysis are used to estimate characteristic damping times of sound waves in superfluid neutron stars. It is demonstrated that all four bulk viscosity coefficients lead to comparable dissipation of sound waves and should be considered on the same footing.Comment: 11 pages, 1 figure, this version with some minor stylistic changes is published in Phys. Rev.

    Volume element structure and roton-maxon-phonon excitations in superfluid helium beyond the Gross-Pitaevskii approximation

    Full text link
    We propose a theory which deals with the structure and interactions of volume elements in liquid helium II. The approach consists of two nested models linked via parametric space. The short-wavelength part describes the interior structure of the fluid element using a non-perturbative approach based on the logarithmic wave equation; it suggests the Gaussian-like behaviour of the element's interior density and interparticle interaction potential. The long-wavelength part is the quantum many-body theory of such elements which deals with their dynamics and interactions. Our approach leads to a unified description of the phonon, maxon and roton excitations, and has noteworthy agreement with experiment: with one essential parameter to fit we reproduce at high accuracy not only the roton minimum but also the neighboring local maximum as well as the sound velocity and structure factor.Comment: 9 pages, 6 figure

    Hydrodynamic modes in a trapped Bose gas above the Bose-Einstein transition

    Full text link
    We discuss the collective modes of a trapped Bose gas in the hydrodynamic regime where atomic collisions ensure local thermal equilibrium for the distribution function. Starting from the conservation laws, in the linearized limit we derive a closed equation for the velocity fluctuations in a trapped Bose gas above the Bose-Einstein transition temperature. Explicit solutions for a parabolic trap are given. We find that the surface modes have the same dispersion relation as the one recently obtained by Stringari for the oscillations of the condensate at T=0T=0 within the Thomas-Fermi approximation. Results are also given for the monopole ``breathing'' mode as well as for the m=0m=0 excitations which result from the coupling of the monopole and quadrupole modes in an anisotropic parabolic well.Comment: 4 pages, no figure, submitted to Phys. Rev. Let

    The superfluid fountain effect in a Bose-Einstein condensate

    Full text link
    We consider a simple experimental setup, based on a harmonic confinement, where a Bose-Einstein condensate and a thermal cloud of weakly interacting alkali atoms are trapped in two different vessels connected by a narrow channel. Using the classical field approximation, as described in J. Phys. B 40, R1 (2007) and optimized in Phys. Rev. A 81, 013629 (2010) for an arbitrary trapping potential, we theoretically investigate the analog of the celebrated superfluid helium fountain effect. We show that this thermo-mechanical effect might indeed be observed in this system. By analyzing the dynamics of the system, we are able to identify the superfluid and normal components of the flow as well as to distinguish the condensate fraction from the superfluid component. We show that the superfluid component can easily flow from the colder vessel to the hotter one while the normal component is practically blocked in the latter.Comment: 13 pages, 11 figures, 3 table

    Short-Wave Excitations in Non-Local Gross-Pitaevskii Model

    Full text link
    It is shown, that a non-local form of the Gross-Pitaevskii equation allows to describe not only the long-wave excitations, but also the short-wave ones in the systems with Bose-condensate. At given parameter values, the excitation spectrum mimics the Landau spectrum of quasi-particle excitations in superfluid Helium with roton minimum. The excitation wavelength, at which the roton minimum exists, is close to the inter-particle interaction range. It is shown, that the existence domain of the spectrum with a roton minimum is reduced, if one accounts for an inter-particle attraction.Comment: 5 pages, 5 figures, UJP style; presented at Bogolyubov Kyiv Conference "Modern Problems of Theoretical and Mathematical Physics", September 15-18, 200

    Multi-threshold second-order phase transition

    Get PDF
    We present a theory of the multi-threshold second-order phase transition, and experimentally demonstrate the multi-threshold second-order phase transition phenomenon. With carefully selected parameters, in an external cavity diode laser system, we observe second-order phase transition with multiple (three or four) thresholds in the measured power-current-temperature three dimensional phase diagram. Such controlled death and revival of second-order phase transition sheds new insight into the nature of ubiquitous second-order phase transition. Our theory and experiment show that the single threshold second-order phase transition is only a special case of the more general multi-threshold second-order phase transition, which is an even richer phenomenon.Comment: 5 pages, 3 figure

    Thermodynamic Geometry and Phase Transitions in Kerr-Newman-AdS Black Holes

    Full text link
    We investigate phase transitions and critical phenomena in Kerr-Newman-Anti de Sitter black holes in the framework of the geometry of their equilibrium thermodynamic state space. The scalar curvature of these state space Riemannian geometries is computed in various ensembles. The scalar curvature diverges at the critical point of second order phase transitions for these systems. Remarkably, however, we show that the state space scalar curvature also carries information about the liquid-gas like first order phase transitions and the consequent instabilities and phase coexistence for these black holes. This is encoded in the turning point behavior and the multi-valued branched structure of the scalar curvature in the neighborhood of these first order phase transitions. We re-examine this first for the conventional Van der Waals system, as a preliminary exercise. Subsequently, we study the Kerr-Newman-AdS black holes for a grand canonical and two "mixed" ensembles and establish novel phase structures. The state space scalar curvature bears out our assertion for the first order phase transitions for both the known and the new phase structures, and closely resembles the Van der Waals system.Comment: 1 + 41 pages, LaTeX, 46 figures. Discussions, clarifications and references adde

    Transport in holographic superfluids

    Full text link
    We construct a slowly varying space-time dependent holographic superfluid and compute its transport coefficients. Our solution is presented as a series expansion in inverse powers of the charge of the order parameter. We find that the shear viscosity associated with the motion of the condensate vanishes. The diffusion coefficient of the superfluid is continuous across the phase transition while its third bulk viscosity is found to diverge at the critical temperature. As was previously shown, the ratio of the shear viscosity of the normal component to the entropy density is 1/(4 pi). As a consequence of our analysis we obtain an analytic expression for the backreacted metric near the phase transition for a particular type of holographic superfluid.Comment: 45 pages + appendice

    Limited Tumor Tissue Drug Penetration Contributes to Primary Resistance against Angiogenesis Inhibitors

    Get PDF
    Resistance mechanisms against antiangiogenic drugs are unclear. Here, we correlated the antitumor and antivascular properties of five different antiangiogenic receptor tyrosine kinase inhibitors (RTKIs) (motesanib, pazopanib, sorafenib, sunitinib, vatalanib) with their intratumoral distribution data obtained by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). In the first mouse model, only sunitinib exhibited broad-spectrum antivascular and antitumor activities by simultaneously suppressing vascular endothelial growth factor receptor-2 (VEGFR2) and desmin expression, and by increasing intratumoral hypoxia and inhibiting both tumor growth and vascularisation significantly. Importantly, the highest and most homogeneous intratumoral drug concentrations have been found in sunitinib-treated animals. In another animal model, where - in contrast to the first model - vatalanib was detectable at homogeneously high intratumoral concentrations, the drug significantly reduced tumor growth and angiogenesis. In conclusion, the tumor tissue penetration and thus the antiangiogenic and antitumor potential of antiangiogenic RTKIs vary among the tumor models and our study demonstrates the potential of MALDI-MSI to predict the efficacy of unlabelled small molecule antiangiogenic drugs in malignant tissue. Our approach is thus a major technical and preclinical advance demonstrating that primary resistance to angiogenesis inhibitors involves limited tumor tissue drug penetration. We also conclude that MALDI-MSI may significantly contribute to the improvement of antivascular cancer therapies

    Perturbation and Variational Methods in Nonextensive Tsallis Statistics

    Full text link
    A unified presentation of the perturbation and variational methods for the generalized statistical mechanics based on Tsallis entropy is given here. In the case of the variational method, the Bogoliubov inequality is generalized in a very natural way following the Feynman proof for the usual statistical mechanics. The inequality turns out to be form-invariant with respect to the entropic index qq. The method is illustrated with a simple example in classical mechanics. The formalisms developed here are expected to be useful in the discussion of nonextensive systems.Comment: revte
    corecore