1,522 research outputs found
Classification of four-qubit entangled states via Machine Learning
We apply the support vector machine (SVM) algorithm to derive a set of
entanglement witnesses (EW) to identify entanglement patterns in families of
four-qubit states. The effectiveness of SVM for practical EW implementations
stems from the coarse-grained description of families of equivalent entangled
quantum states. The equivalence criteria in our work is based on the stochastic
local operations and classical communication (SLOCC) classification and the
description of the four-qubit entangled Werner states. We numerically verify
that the SVM approach provides an effective tool to address the entanglement
witness problem when the coarse-grained description of a given family state is
available. We also discuss and demonstrate the efficiency of nonlinear kernel
SVM methods as applied to four-qubit entangled state classification.Comment: 10 pages, 8 figure
Multiparticle angular correlations: a probe for the sQGP at RHIC
A novel decomposition technique is used to extract the centrality dependence
of di-jet properties and yields from azimuthal correlation functions obtained
in Au+Au collisions at =200 GeV. The width of the
near-side jet shows very little dependence on centrality. In contrast, the
away-side jet indicates substantial broadening as well as hints for for a local
minimum at for central and mid-central events. The yield of
jet-pairs (per trigger particle) slowly increases with centrality for both the
near- and away-side jets. These observed features are compatible with several
recent theoretical predictions of possible modifications of di-jet
fragmentation by a strongly interacting medium. Several new experimental
approaches, including the study of flavor permutation and higher order
multi-particle correlations, that might help to distinguish between different
theoretical scenarios are discussed.Comment: Proceedings of the MIT workshop on correlations and fluctation
Parton energy loss limits and shadowing in Drell-Yan dimuon production
A precise measurement of the ratios of the Drell-Yan cross section per
nucleon for an 800 GeV/c proton beam incident on Be, Fe and W targets is
reported. The behavior of the Drell-Yan ratios at small target parton momentum
fraction is well described by an existing fit to the shadowing observed in
deep-inelastic scattering. The cross section ratios as a function of the
incident parton momentum fraction set tight limits on the energy loss of quarks
passing through a cold nucleus
Interferometry of Direct Photons in Central 280Pb+208Pb Collisions at 158A GeV
Two-particle correlations of direct photons were measured in central
208Pb+208Pb collisions at 158 AGeV. The invariant interferometric radii were
extracted for 100<K_T<300 MeV/c and compared to radii extracted from charged
pion correlations. The yield of soft direct photons, K_T<300 MeV/c, was
extracted from the correlation strength and compared to theoretical
calculations.Comment: 5 pages, 4 figure
Search for DCC in 158A GeV Pb+Pb Collisions
A detailed analysis of the phase space distributions of charged particles and
photons have been carried out using two independent methods. The results
indicate the presence of nonstatistical fluctuations in localized regions of
phase space.Comment: Talk at the PANIC99 Conference, June 9-16, 199
Particle density fluctuations
Event-by-event fluctuations in the multiplicities of charged particles and
photons at SPS energies are discussed. Fluctuations are studied by controlling
the centrality of the reaction and rapidity acceptance of the detectors.
Results are also presented on the event-by-event study of correlations between
the multiplicity of charged particles and photons to search for DCC-like
signals.Comment: Talk presented at Quark Matter 2002, Nantes, Franc
- …