1,522 research outputs found

    Classification of four-qubit entangled states via Machine Learning

    Full text link
    We apply the support vector machine (SVM) algorithm to derive a set of entanglement witnesses (EW) to identify entanglement patterns in families of four-qubit states. The effectiveness of SVM for practical EW implementations stems from the coarse-grained description of families of equivalent entangled quantum states. The equivalence criteria in our work is based on the stochastic local operations and classical communication (SLOCC) classification and the description of the four-qubit entangled Werner states. We numerically verify that the SVM approach provides an effective tool to address the entanglement witness problem when the coarse-grained description of a given family state is available. We also discuss and demonstrate the efficiency of nonlinear kernel SVM methods as applied to four-qubit entangled state classification.Comment: 10 pages, 8 figure

    Multiparticle angular correlations: a probe for the sQGP at RHIC

    Full text link
    A novel decomposition technique is used to extract the centrality dependence of di-jet properties and yields from azimuthal correlation functions obtained in Au+Au collisions at sNN\sqrt{s_{_{\rm NN}}}=200 GeV. The width of the near-side jet shows very little dependence on centrality. In contrast, the away-side jet indicates substantial broadening as well as hints for for a local minimum at Δϕ=π\Delta \phi=\pi for central and mid-central events. The yield of jet-pairs (per trigger particle) slowly increases with centrality for both the near- and away-side jets. These observed features are compatible with several recent theoretical predictions of possible modifications of di-jet fragmentation by a strongly interacting medium. Several new experimental approaches, including the study of flavor permutation and higher order multi-particle correlations, that might help to distinguish between different theoretical scenarios are discussed.Comment: Proceedings of the MIT workshop on correlations and fluctation

    Parton energy loss limits and shadowing in Drell-Yan dimuon production

    Get PDF
    A precise measurement of the ratios of the Drell-Yan cross section per nucleon for an 800 GeV/c proton beam incident on Be, Fe and W targets is reported. The behavior of the Drell-Yan ratios at small target parton momentum fraction is well described by an existing fit to the shadowing observed in deep-inelastic scattering. The cross section ratios as a function of the incident parton momentum fraction set tight limits on the energy loss of quarks passing through a cold nucleus

    Interferometry of Direct Photons in Central 280Pb+208Pb Collisions at 158A GeV

    Full text link
    Two-particle correlations of direct photons were measured in central 208Pb+208Pb collisions at 158 AGeV. The invariant interferometric radii were extracted for 100<K_T<300 MeV/c and compared to radii extracted from charged pion correlations. The yield of soft direct photons, K_T<300 MeV/c, was extracted from the correlation strength and compared to theoretical calculations.Comment: 5 pages, 4 figure

    Search for DCC in 158A GeV Pb+Pb Collisions

    Full text link
    A detailed analysis of the phase space distributions of charged particles and photons have been carried out using two independent methods. The results indicate the presence of nonstatistical fluctuations in localized regions of phase space.Comment: Talk at the PANIC99 Conference, June 9-16, 199

    Particle density fluctuations

    Full text link
    Event-by-event fluctuations in the multiplicities of charged particles and photons at SPS energies are discussed. Fluctuations are studied by controlling the centrality of the reaction and rapidity acceptance of the detectors. Results are also presented on the event-by-event study of correlations between the multiplicity of charged particles and photons to search for DCC-like signals.Comment: Talk presented at Quark Matter 2002, Nantes, Franc
    corecore