120 research outputs found

    Parallel fabrication and single-electron charging of devices based on ordered, two-dimensional phases of organically functionalized metal nanocrystals

    Get PDF
    A parallel technique for fabricating single-electron, solid-state capacitance devices from ordered, two-dimensional closest-packed phases of organically functionalized metal nanocrystals is presented. The nanocrystal phases were prepared as Langmuir monolayers and subsequently transferred onto Al-electrode patterned glass substrates for device construction. Alternating current impedance measurements were carried out to probe the single-electron charging characteristics of the devices under both ambient and 77 K conditions. Evidence of a Coulomb blockade and step structure reminiscent of a Coulomb staircase is presented

    Model for SU(3) vacuum degeneracy using light-cone coordinates

    Get PDF
    Working in light-cone coordinates, we study the zero-modes and the vacuum in a 2+1 dimensional SU(3) gauge model. Considering the fields as independent of the tranverse variables, we dimensionally reduce this model to 1+1 dimensions. After introducing an appropriate su(3) basis and gauge conditions, we extract an adjoint field from the model. Quantization of this adjoint field and field equations lead to two constrained and two dynamical zero-modes. We link the dynamical zero-modes to the vacuum by writing down a Schrodinger equation and prove the non-degeneracy of the SU(3) vacuum provided that we neglect the contribution of constrained zero-modes.Comment: 22 pages, 5 figure

    Hadron-nucleus scattering in the local reggeon model with pomeron loops for realistic nuclei

    Full text link
    Contribution of simplest loops for hadron-nucleus scattering cross-sections is studied in the Local Reggeon Field Theory with a supercritical pomeron. It is shown that inside the nucleus the supercritical pomeron transforms into a subcritical one, so that perturbative treatment becomes possible. The pomeron intercept becomes complex, which leads to oscillations in the cross-sections.Comment: 13 pages, 6 figure

    QCD at small x and nucleus-nucleus collisions

    Get PDF
    At large collision energy sqrt(s) and relatively low momentum transfer Q, one expects a new regime of Quantum Chromo-Dynamics (QCD) known as "saturation". This kinematical range is characterized by a very large occupation number for gluons inside hadrons and nuclei; this is the region where higher twist contributions are as large as the leading twist contributions incorporated in collinear factorization. In this talk, I discuss the onset of and dynamics in the saturation regime, some of its experimental signatures, and its implications for the early stages of Heavy Ion Collisions.Comment: Plenary talk given at QM2006, Shanghai, November 2006. 8 pages, 8 figure

    Global QCD fit from Q2=0Q^2=0 to Q2=30000Q^2=30000 GeV2^2 with Regge-compatible initial condition

    Full text link
    In this paper I show that it is possible to use Regge theory to constrain the initial parton distribution functions of a global DGLAP fit. In this approach, both quarks and gluons have the same high-energy behaviour which may also be used to describe soft interactions. More precisely, I show that, if we parametrise the parton distributions with a triple-pole pomeron, {\em i.e.} like log2(1/x)\log^2(1/x) at small xx, at Q2=Q02Q^2=Q_0^2 and evolve these distribution with the DGLAP equation, we can reproduce F2pF_2^p, F2dF_2^d, F2n/F2pF_2^n/F_2^p, F2νNF_2^{\nu N} and xF3νNxF_3^{\nu N} for W212.5W^2\ge 12.5 GeV2^2. In this case, we obtain a new leading-order global QCD fit with a Regge-compatible initial condition. I shall also show that it is possible to use Regge theory to extend the parton distribution functions to small Q2Q^2. This leads to a description of the structure functions over the whole Q2Q^2 range based on Regge theory at low Q2Q^2 and on QCD at large Q2Q^2. Finally, I shall argue that, at large Q2Q^2, the parton distribution functions obtained from DGLAP evolution and containing an essential singularity at j=1j=1 can be approximated by a triple-pole pomeron behaviour.Comment: 42 pages, 18 figure

    Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report

    Full text link
    This Report summarizes the proceedings of the 2013 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections and (2) the comparison of those cross sections with LHC data from Run 1, and projections for future measurements in Run 2.Comment: Proceedings of the Standard Model Working Group of the 2013 Les Houches Workshop, Physics at TeV Colliders, Les houches 3-21 June 2013. 200 page

    Evaluation of the Strong Coupling Constant alpha_s Using the ATLAS Inclusive Jet Cross-Section Data

    Full text link
    We perform a determination of the strong coupling constant using the latest ATLAS inclusive jet cross section data, from proton-proton collisions at sqrt{s}=7 TeV, and their full information on the bin-to-bin correlations. Several procedures for combining the statistical information from the different data inputs are studied and compared. The theoretical prediction is obtained using NLO QCD, and it also includes non-perturbative corrections. Our determination uses inputs with transverse momenta between 45 and 600 GeV, the running of the strong coupling being also tested in this range. Good agreement is observed when comparing our result with the world average at the Z-boson scale, as well as with the most recent results from the Tevatron.Comment: 15 pages, 6 figures. Extended discussion of non-perturbative corrections. Matches version published in EPJ

    Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report

    Get PDF
    This Report summarizes the proceedings of the 2015 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) the new PDF4LHC parton distributions, (III) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (IV) a host of phenomenological studies essential for comparing LHC data from Run I with theoretical predictions and projections for future measurements in Run II, and (V) new developments in Monte Carlo event generators.Comment: Proceedings of the Standard Model Working Group of the 2015 Les Houches Workshop, Physics at TeV Colliders, Les Houches 1-19 June 2015. 227 page

    Non-linear QCD dynamics in two-photon interactions at high energies

    Get PDF
    Perturbative QCD predicts that the growth of the gluon density at high energies should saturate, forming a Color Glass Condensate (CGC), which is described in mean field approximation by the Balitsky-Kovchegov (BK) equation. In this paper we study the γγ\gamma \gamma interactions at high energies and estimate the main observables which will be probed at future linear colliders using the color dipole picture. We discuss in detail the dipole - dipole cross section and propose a new relation between this quantity and the dipole scattering amplitude. The total γγ\gamma \gamma, γγ\gamma^{*} \gamma^{*} cross-sections and the real photon structure function F2γ(x,Q2)F_2^{\gamma}(x,Q^2) are calculated using the recent solution of the BK equation with running coupling constant and the predictions are compared with those obtained using phenomenological models for the dipole-dipole cross section and scattering amplitude. We demonstrate that these models are able to describe the LEP data at high energies, but predict a very different behavior for the observables at higher energies. Therefore we conclude that the study of γγ\gamma \gamma interactions can be useful to constrain the QCD dynamics.Comment: 11 pages, 5 figures. Version to be published in European Physical Journal
    corecore