34 research outputs found

    Gate-induced magneto-oscillation phase anomalies in graphene bilayers

    Full text link
    The magneto-oscillations in graphene bilayers are studied in the vicinity of the K and K' points of the Brillouin zone within the four-band continuum model ased on the simplest tight-binding approximation involving only the nearest neighbor interactions. The model is employed to construct Landau plots for a variety of carrier concentrations and bias strengths between the graphene planes. The quantum-mechanical and quasiclassical approaches are compared. We found that the quantum magneto-oscillations are only asymptotically periodic and reach the frequencies predicted quasiclassically for high indices of Landau levels. In unbiased bilayers the phase of oscillations is equal to the phase of massive fermions. Anomalous behavior of oscillation phases was found in biased bilayers with broken inversion symmetry. The oscillation frequencies again tend to quasiclassically predicted ones, which are the same for KK and KK', but the quantum approach yields the gate-tunable corrections to oscillation phases, which differ in sign for K and K'. These valley-dependent phase corrections give rise, instead of a single quasiclassical series of oscillations, to two series with the same frequency but shifted in phase.Comment: 8 pages, 8 figure

    Excitonic photoluminescence in symmetric coupled double quantum wells subject to an external electric field

    Full text link
    The effect of an external electric field F on the excitonic photoluminescence (PL) spectra of a symmetric coupled double quantum well (DQW) is investigated both theoretically and experimentally. We show that the variational method in a two-particle electron-hole wave function approximation gives a good agreement with measurements of PL on a narrow DQW in a wide interval of F including flat-band regime. The experimental data are presented for an MBE-grown DQW consisting of two 5 nm wide GaAs wells, separated by a 4 monolayers (MLs) wide pure AlAs central barrier, and sandwiched between Ga_{0.7}Al_{0.3}As layers. The bias voltage is applied along the growth direction. Spatially direct and indirect excitonic transitions are identified, and the radius of the exciton and squeezing of the exciton in the growth direction are evaluated variationally. The excitonic binding energies, recombination energies, oscillator strengths, and relative intensities of the transitions as functions of the applied field are calculated. Our analysis demonstrates that this simple model is applicable in case of narrow DQWs not just for a qualitative description of the PL peak positions but also for the estimation of their individual shapes and intensities.Comment: 5 pages, 4 figures (accepted in Phys. Rev. B

    Electronic Processes at the Breakdown of the Quantum Hall Effect

    Full text link
    Microscopic processes giving the energy gain and loss of a two-dimensional electron system in long-range potential fluctuations are studied theoretically at the breakdown of the quantum Hall effect in the case of even-integer filling factors. The Coulomb scattering within a broadened Landau level is proposed to give the gain, while the phonon scattering to give the loss. The energy balance equation shows that the electron temperature T_e and the diagonal conductivity sigma_{xx} exhibit a bistability above the lower critical electric field E_{c1}. Calculated values of E_{c1} as well as T_e and sigma_{xx} at E_{c1} are in agreement with the observed values in their orders of magnitude.Comment: 4 pages, 2 Postscript figures, submitted to the Journal of the Physical Society of Japa

    Magnetic Anisotropy in Quantum Hall Ferromagnets

    Full text link
    We show that the sign of magnetic anisotropy energy in quantum Hall ferromagnets is determined by a competition between electrostatic and exchange energies. Easy-axis ferromagnets tend to occur when Landau levels whose states have similar spatial profiles cross. We report measurements of integer QHE evolution with magnetic-field tilt. Reentrant behavior observed for the ν=4\nu = 4 QHE at high tilt angles is attributed to easy-axis anisotropy. This interpretation is supported by a detailed calculation of the magnetic anisotropy energy.Comment: 12 pages, 3 figures, submitted to Phys. Rev. Let

    Quasiparticle Hall Transport of d-wave Superconductors in Vortex State

    Full text link
    We present a theory of quasiparticle Hall transport in strongly type-II superconductors within their vortex state. We establish the existence of integer quantum spin Hall effect in clean unconventional dx2y2d_{x^2-y^2} superconductors in the vortex state from a general analysis of the Bogoliubov-de Gennes equation. The spin Hall conductivity σxys\sigma^s_{xy} is shown to be quantized in units of 8π\frac{\hbar}{8\pi}. This result does not rest on linearization of the BdG equations around Dirac nodes and therefore includes inter-nodal physics in its entirety. In addition, this result holds for a generic inversion-symmetric lattice of vortices as long as the magnetic field BB satisfies Hc1BHc2H_{c1} \ll B \ll H_{c2}. We then derive the Wiedemann-Franz law for the spin and thermal Hall conductivity in the vortex state. In the limit of T0T \to 0, the thermal Hall conductivity satisfies κxy=4π23(kB)2Tσxys\kappa_{x y}=\frac{4\pi^2}{3}(\frac{k_B}{\hbar})^2 T \sigma^s_{xy}. The transitions between different quantized values of σxys\sigma^s_{xy} as well as relation to conventional superconductors are discussed.Comment: 18 pages REVTex, 3 figures, references adde

    Thermohydrodynamics in Quantum Hall Systems

    Full text link
    A theory of thermohydrodynamics in two-dimensional electron systems in quantizing magnetic fields is developed including a nonlinear transport regime. Spatio-temporal variations of the electron temperature and the chemical potential in the local equilibrium are described by the equations of conservation with the number and thermal-energy flux densities. A model of these flux densities due to hopping and drift processes is introduced for a random potential varying slowly compared to both the magnetic length and the phase coherence length. The flux measured in the standard transport experiment is derived and is used to define a transport component of the flux density. The equations of conservation can be written in terms of the transport component only. As an illustration, the theory is applied to the Ettingshausen effect, in which a one-dimensional spatial variation of the electron temperature is produced perpendicular to the current.Comment: 10 pages, 1 figur

    Change in Magnetic Anisotropy at the Surface and in the Bulk of FINEMET Induced by Swift Heavy Ion Irradiation

    Full text link
    57 Fe transmission and conversion electron Mössbauer spectroscopy as well as XRD were used to study the effect of swift heavy ion irradiation on stress-annealed FINEMET samples with a composition of Fe73.5 Si13.5 Nb3 B9 Cu1. The XRD of the samples indicated changes neither in the crystal structure nor in the texture of irradiated ribbons as compared to those of non-irradiated ones. However, changes in the magnetic anisotropy both in the bulk as well as at the surface of the FINEMET alloy ribbons irradiated by 160 MeV132 Xe ions with a fluence of 1013 ion cm−2 were revealed via the decrease in relative areas of the second and fifth lines of the magnetic sextets in the corresponding Mössbauer spectra. The irradiation-induced change in the magnetic anisotropy in the bulk was found to be similar or somewhat higher than that at the surface. The results are discussed in terms of the defects produced by irradiation and corresponding changes in the orientation of spins depending on the direction of the stress generated around these defects. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.CZ-11/2007, MEB040806; Ministry of Education and Science of the Russian Federation, Minobrnauka: FEUZ-2020-0060; Hungarian Scientific Research Fund, OTKA: K100424, K115784, K115913, K43687, K68135; Joint Institute for Nuclear Research, JINR; Univerzita Palackého v Olomouci: CZ.02.1.01/0.0/0.0/17_049/0008408, IGA_PrF_2022_003, IGA_PrF_2022_013; Ural Federal University, UrFU: 04-5-1131-2017/2021; Nemzeti Kutatási Fejlesztési és Innovációs Hivatal, NKFIHFunding: The research was supported by grants from the Hungarian National Research, Development and Innovation Office (OTKA projects No K43687, K68135, K100424, K115913, K115784) and by the Czech-Hungarian Intergovernmental Fund, Grant No. CZ-11/2007 (MEB040806). M.I.O. was supported by the Ministry of Science and Higher Education of the Russian Federation, project No. FEUZ-2020-0060. Additionally, M.I.O. was supported in part by the Ural Federal University project within the Priority-2030 Program, funded from the Ministry of Science and Higher Education of the Russian Federation. This work was also supported by the project “Swift heavy ions in research of iron-bearing nanomaterials”, No. of theme 04-5-1131-2017/2021, solved in cooperation with the Czech Republic and the JINR (3 + 3 projects), and also by internal IGA grant of Palacký University (IGA_PrF_2022_003). The authors from Palacký University Olomouc want to thank the facilitators of project CZ.02.1.01/0.0/0.0/17_049/0008408 of the Ministry of Education, Youth & Sports of the Czech Republic for their support as well.Acknowledgments: We are grateful to Z. Klencsár (Centre for Energy Research, Budapest), M. Miglierini (Technical University, Bratislava), I. Dézsi (Wigner Research Centre for Physics, Budapest), S. Kubuki, and K. Nomura (Tokyo Metropolitan University, Tokyo) for their participation in discussions, and L. Krupa (Czech Technical University in Prague, Czech Republic and Joint Institute for Nuclear Research, Dubna) for his help with the organization of project cooperation. The support by grants from the Hungarian National Research, Development and Innovation Office and by the Czech-Hungarian Intergovernmental Fund, Grant No. CZ-11/2007 (MEB040806) are acknowledged. M.I.O. is grateful for support from the Ministry of Science and Higher Education of the Russian Federation and from the Ural Federal University project within the Priority-2030 Program. This work was also carried out within the Agreement of Cooperation between the Ural Federal University (Ekaterinburg) and the Eötvös Loránd University (Budapest) and within the Memorandum of Understanding between the Ural Federal University (Ekaterinburg) and the Palacký University (Olomouc). Authors acknowledge the support of the project “Swift heavy ions in research of iron-bearing nanomaterials”, No. of theme 04-5-1131-2017/2021, solved in cooperation with the Czech Republic and the JINR (3 + 3 projects). Authors from Palacký University Olomouc appreciate the internal IGA grant of Palacký University (IGA_PrF_2022_013) and thank the facilitators of the project CZ.02.1.01/0.0/0.0/17_049/0008408 of the Ministry of Education, Youth & Sports of the Czech Republic as well

    War Injuries from Past to Present

    No full text
    The symposium was conceived as a meeting of Ph.D. students studying palaeopathological issues. Due to a great interest in this subject matter it was finály extended by further invited scientific lecturers who are concerned with the history of medicine. The Symposium covered this subject matter not only from the Neolithic Age to the World War I but also to the present days

    War Injuries in the World War I

    No full text
    The paper describes the medical officer during the First World War at the front. Describes transport wounded soldiers from the front, the ways of their first treatment to treatment in field hospitals. The First World War brought about the development of numerous medical fields and the introduction of completely new, such as plastic surgery
    corecore