723 research outputs found

    Synthesis of Novel Aromatic Core Zero Generation Dendrimers

    Get PDF
    Bromomethyl arenes used as polyfunctional core of dendrimers were derivatized with diethanolamine branches. The obtained compounds containing 4 or 6 hydroxyl terminal surface groups are highly water-soluble

    Feasibility of Group Schema Therapy for Outpatients with Severe Borderline Personality Disorder in Germany:A Pilot Study with Three Year Follow-Up

    Get PDF
    Borderline Personality Disorder (BPD) is a severe, challenging to treat mental disorder. Schema therapy (ST) as an individual therapy has been proven to be an effective psychological treatment for BPD. A group format of ST (GST) has been developed and evaluated in a randomized controlled trial in the United States and piloted in The Netherlands. These results suggest that GST speeds up and amplifies treatment effects of ST and might reduce delivery costs. However, feasibility in the German health care system and with BPD patients with high BPD severity and comorbidity, and frequent hospitalization, has not been tested to date. We investigated GST in 10 severely impaired, highly comorbid female patients with BPD, that needed frequent hospital admission. Patients received an outpatient ST-treatment program with weekly group and individual sessions for 1 year. Outcome measures including BPD severity, general psychopathology, psychosocial functioning, quality of life, happiness, schemas, and modes, and days of hospitalization were assessed at the start of treatment and 6, 12, and 36 months later with semi-structured interviews and self-report measures. We observed significant decreases in severity of BPD symptoms, general symptom severity, dysfunctional BPD-specific modes and schemas, and days of hospitalization. Functional modes, quality of live and happiness improved. The results of this feasibility study are promising and encourage further implementation of ST outpatient treatment programs even for patients with severe BPD and high hospitalization risk. However, small sample size and the missing of a control group do not allow the generalizability of these findings

    Implementation and performance evaluation of distributed cloud storage solutions using random linear network coding

    Get PDF
    This paper advocates the use of random linear network coding for storage in distributed clouds in order to reduce storage and traffic costs in dynamic settings, i.e. when adding and removing numerous storage devices/clouds on-the-fly and when the number of reachable clouds is limited. We introduce various network coding approaches that trade-off reliability, storage and traffic costs, and system complexity relying on probabilistic recoding for cloud regeneration. We compare these approaches with other approaches based on data replication and Reed-Solomon codes. A simulator has been developed to carry out a thorough performance evaluation of the various approaches when relying on different system settings, e.g., finite fields, and network/storage conditions, e.g., storage space used per cloud, limited network use, and limited recoding capabilities. In contrast to standard coding approaches, our techniques do not require us to retrieve the full original information in order to store meaningful information. Our numerical results show a high resilience over a large number of regeneration cycles compared to other approaches.Danish Council for Independent Research (Green Mobile Cloud Project DFF-090201372B)Hungarian National Development Agency (Research and Technology Innovation Fund Grant KMR_12-1-2012-0441)European Union (European Social Fund Project FuturICT.hu Grant TAMOP- 4.2.2.C-11/1/KONV-2012-0013

    Concurrence of chromosome 3 and 4 aberrations in human uveal melanoma

    Get PDF
    Uveal melanoma (UM) is the most common primary intraocular malignancy with a very poor prognosis. The most frequent chromosome aberration in UM is the monosomy of chromosome 3. Previously, we demonstrated that ~50% of UMs express type-I receptor for luteinizing hormone-releasing hormone (LH-RH-R). The gene encoding LH-RH-R is located in chromosome 4 (location: 4q21.2); however, the occurrence of numerical aberrations of chromosome 4 have never been studied in UM. In the present study, we investigated the abnormalities of chromosome 3 and 4, and the possible correlation between them, as well as with LH-RH-R expression. Forty-six specimens of UM were obtained after enucleation. Numerical aberrations of chromosome 3 and 4 were studied by fluorescence in situ hybridization (FISH). Chromosome 4 was detected in normal biparental disomy only in 14 (30%) samples; however, 32 cases (70%) showed more than 2 signals/nucleus. Monosomy of chromosome 3 could be found in 16 (35%) samples. In 6 specimens (13%), more than 2 copies of chromosome 3 were found, while normal biparental disomy was detected in 24 (52%) samples. Statistical analysis indicated a statistically significant (p<0.05) correlation between the copy number of chromosome 3 and 4. Moreover, moderate difference was revealed in the survival rate of the UM patients with various pathological profiles. No correlation was found between chromosome aberrations and LH-RH-R expression. Our results clearly demonstrate abnormalities in chromosome 3 and 4 and the incidence of the monosomy of chromosome 3 in human UM. In summary, our results provide new incite concerning the genetic background of this tumor. Our findings could contribute to a more precise determination of the prognosis of human UM and to the development of new therapeutic approaches to this malignancy

    A topological classification of convex bodies

    Get PDF
    The shape of homogeneous, generic, smooth convex bodies as described by the Euclidean distance with nondegenerate critical points, measured from the center of mass represents a rather restricted class M_C of Morse-Smale functions on S^2. Here we show that even M_C exhibits the complexity known for general Morse-Smale functions on S^2 by exhausting all combinatorial possibilities: every 2-colored quadrangulation of the sphere is isomorphic to a suitably represented Morse-Smale complex associated with a function in M_C (and vice versa). We prove our claim by an inductive algorithm, starting from the path graph P_2 and generating convex bodies corresponding to quadrangulations with increasing number of vertices by performing each combinatorially possible vertex splitting by a convexity-preserving local manipulation of the surface. Since convex bodies carrying Morse-Smale complexes isomorphic to P_2 exist, this algorithm not only proves our claim but also generalizes the known classification scheme in [36]. Our expansion algorithm is essentially the dual procedure to the algorithm presented by Edelsbrunner et al. in [21], producing a hierarchy of increasingly coarse Morse-Smale complexes. We point out applications to pebble shapes.Comment: 25 pages, 10 figure

    Orbital textures and charge density waves in transition metal dichalcogenides

    Full text link
    Low-dimensional electron systems, as realized naturally in graphene or created artificially at the interfaces of heterostructures, exhibit a variety of fascinating quantum phenomena with great prospects for future applications. Once electrons are confined to low dimensions, they also tend to spontaneously break the symmetry of the underlying nuclear lattice by forming so-called density waves; a state of matter that currently attracts enormous attention because of its relation to various unconventional electronic properties. In this study we reveal a remarkable and surprising feature of charge density waves (CDWs), namely their intimate relation to orbital order. For the prototypical material 1T-TaS2 we not only show that the CDW within the two-dimensional TaS2-layers involves previously unidentified orbital textures of great complexity. We also demonstrate that two metastable stackings of the orbitally ordered layers allow to manipulate salient features of the electronic structure. Indeed, these orbital effects enable to switch the properties of 1T-TaS2 nanostructures from metallic to semiconducting with technologically pertinent gaps of the order of 200 meV. This new type of orbitronics is especially relevant for the ongoing development of novel, miniaturized and ultra-fast devices based on layered transition metal dichalcogenides
    corecore