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Abstract—This paper advocates the use of random linear

network coding for storage in distributed clouds in order to

reduce storage and traffic costs in dynamic settings, i.e. when

adding and removing numerous storage devices/clouds on–the–

fly and when the number of reachable clouds is limited. We

introduce various network coding approaches that trade–off

reliability, storage and traffic costs, and system complexity relying

on probabilistic recoding for cloud regeneration. We compare

these approaches with other approaches based on data replication

and Reed–Solomon codes. A simulator has been developed to

carry out a thorough performance evaluation of the various

approaches when relying on different system settings, e.g., finite

fields, and network/storage conditions, e.g., storage space used

per cloud, limited network use, and limited recoding capabilities.

In contrast to standard coding approaches, our techniques do not

require us to retrieve the full original information in order to

store meaningful information. Our numerical results show a high

resilience over a large number of regeneration cycles compared

to other approaches.

I. INTRODUCTION AND MOTIVATION

The use of coding for providing reliability in storage so-
lutions dates back to the introduction of Redundant Array
of Independent Disks (RAID) systems [1]. These storage
solutions have been widely used for back up solutions in the
past, but have been characterized by a highly planned and
inflexible coding process due in part to the type of error
correcting codes used. In fact, early RAID systems needed
hard disks to have the same storage space and speed. Although
successful, these approaches may not be well suited for more
distributed storage solutions, e.g., cloud storage, which are
characterized not only by heterogeneity but also by high costs
to transmit data across the network during the regeneration
of storage units. This can be particularly taxing when using
standard coding techniques, which require enough data to
be gathered in order to first decode and then re–encode the
missing parts.

Network coding has been identified as a viable technology
for enabling distributed storage by reducing the system’s
requirements for regenerating redundancy. It was originally
proposed in [2] in the context of sensor networks. Network
coding has a series of advantages over standard end–to–end
coding, including the possibility to recode already encoded
data without destroying the code properties. Since that initial

work, research has focused strongly on code regeneration,
e.g., [3], with [4] providing a comprehensive survey on the
topic. More recently, an initial research implementation of
distributed storage with network coding was reported in [5],
while [6] focused on auditing systems for network coding
storage.

Finally, [7] used random linear network coding (RLNC)
to implement a coded cloud storage provider that spread
coded data over several clouds. Coding was shown to reduce
download times of stored files while requiring less storage
space in total (and also per cloud) compared to state–of–the–
art approaches. However, these approaches still rely on a fairly
static structure, a moderate storage size, and careful planning
process in order to yield the desired benefits. This contrasts
with the current and future trends of storage systems, which
envision highly dynamic conditions. One example includes
edge caching in communication networks or peer to peer
networks that need to adapt to highly requested content.
Another example are cloud centers, where hot storage disks,
used for highly demanded content, cannot be accessed and
only the cold storage disks can be used to retrieve the data.
Flexibility is thus critical as cloud systems grow in size, need
to recover from physical hard disk failures, outages due to
software updates, or need to react efficiently to sudden load
balancing activities. These scenarios inherently limit the ability
of the system to plan and optimize the data regeneration
process.

This paper aims to address these new challenges by devel-
oping network coding approaches for distributed and highly
dynamic storage systems. These approaches allow the system
to trade–off traffic costs and storage costs while maintaining
a high reliability over time. By developing a simulator based
on the Kodo C++ library [8], we show that state–of–the–art
approaches based on other coding mechanisms are unable to
provide reasonable reliability after several loss/recovery cycles
while our techniques can be highly reliable with little planning
or coordination for a wide range of operating conditions.

II. NETWORK CODING BASICS

In this work, we consider random linear network coding
(RLNC) to generate coded data in our cloud storage systems.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78067456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


RLNC linearly combines uncoded packets into any number of
coded packets using random coding coefficients from a finite
field. The coded packet has the same size as the uncoded
packets plus some additional information referred to as the
encoding vector, which comprises the values of the random
coefficients used to generate that particular coded packet. In
contrast to any other end–to–end coding approach, RLNC
allows for recoding, i.e. any intermediate node is able to code
over any number of already code packets without needing to
decode the data. This feature is vital for our distributed cloud
approach in order to reduce the amount of data to be conveyed
to a newly added cloud storage device without compromising
reliability.

III. SYSTEM MODEL

In the following, we describe the different strategies under
investigation for distributed cloud storage. Our main focus is
on the different strategies for network coding but we also
introduce two comparison approaches relying on uncoded data
and Reed–Solomon (RS) coding.

A. Network Coding and Storage Model
As given in Figure 1, we consider that data is packetized

into G segments (packets). These G segments are coded into
J coded segments using RLNC with a finite field of size F .
We define R as the redundancy factor given by the ratio of J
and G, i.e., R = J

G . The coded segments are stored afterwards
into C clouds. For simplicity, we assume each cloud can store
at most Q coded segments, but the model can be extended
to cover clouds with heterogeneous storage sizes. In order to
store all J packets, the number of clouds C with capacity Q

needs to be at least

C = �J/Q�. (1)

B. Cloud Loss and Recovery Model
We assume L out of C clouds are randomly lost in each

simulation round. In order to restore the lost clouds, P out of
the remaining C − L clouds can be used to fill L new empty
clouds according to the strategies explained in Sections III-D
and III-E. This simple model that removes and adds L clouds
is mimicking dynamics in a cloud storage system attempting
to preserve the same number of coded storage devices over
time. But our approach can also be used to control the hot
and cold storage areas in a cloud center. In general clouds will
be characterized by adding more and more storage to handle
to increasing service requests. Without going into detail, the
presented approaches using network coding are highly suited
for such changes, while traditional codes would need to recall
all data in order to change the coding strategy.

C. Performance Metrics
• Success Probability: After filling up the new L clouds,

the integrity of the data is checked over all C clouds.
If successful, the procedure starts from the beginning
until H rounds are completed. The tests are repeated
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Fig. 1. Model of the dynamic distributed storage system loosing L clouds
and recovering by exploiting data from a subset of the remaining clouds.

several times to derive the success probability ps, which
is defined by the ratio of successful test to the overall
number of tests carried out.

• Traffic Cost: The number of transmitted segments Ts for
a specific strategy s to regenerate the missing clouds is a
key metric predicting network use. In order to keep the
traffic cost low, Ts should be low.

• Storage Cost: R is the value specifying how much more
storage will be used compared to the original size. In
order to keep the storage cost low, R should be low.

Ultimately, our goal is to minimize the amount of storage
over all clouds and traffic among the clouds while being still
able to retrieve the original data without losses.

D. Recovery Strategies
In the following we explain the different strategies how the

lost clouds L are filled by their remaining P parents. The
strategies will differ in the success probability ps and the
related traffic that is needed to repair for the lost cloud storage.

1) Post–Recoding Approach: P clouds are conveying all
available (P ·Q) information to the new L clouds. Each cloud
out of L will recode over all P ·Q received packets storing only
Q segments into the cloud, where the remaining (P−1)·Q are
simply discarded. Due to the large number of received packet
and the possibility to recode, each of the L clouds will store
different coded versions and the likelihood to store redundant
information across the new clouds is reduced with an increased
field size. The resulting traffic Tpost per round equals

Tpost = P ·Q · L. (2)

2) Pre–Recoding Approach: In order to reduce the traffic
involved in filling the new clouds, pre–recoding is introduced.
Each of the P clouds recodes over its own Q packets sending
only �Q/P � to each new cloud. For each new cloud, different
coded versions are generated. The receiving cloud will only
store the received coded versions without any further actions.



The overall traffic Tpre is drastically reduced in comparison
with the previous approach

Tpre =
�
Q

P

�
· P · L = Q · L+ θ · P · L, (3)

where θ ∈ [0, 1).
Here the traffic is reduced significantly by a factor of up

to P , but the diversity in the code regeneration is small.
Therefore, we now propose hybrid approaches combining the
benefits of the former two.

3) Hybrid Approach: While the post–recoding approach
sends the maximum traffic but achieving the maximal mixing
of the coded segments, the pre–recoding is clearly sending
the minimum traffic with limited mixing capabilities across
different clouds, i.e., only recoding within each existing cloud.
As the name already implies, the hybrid solution provides a
simple mechanism to trade–off traffic and quality of the coding
(mixing) produced.

In the hybrid approach, each cloud out of P recodes over its
own packets sending �α ·Q/P � to each of the L clouds. The
values for α are between 1 and P , where α = 1 corresponds
to the pre–recoding and α = P to the post–recoding approach.
Each new cloud receives now �α · Q/P � · P over which the
new cloud recodes again in order to store Q segments into
the new cloud, while the unused segments are discarded. The
overall traffic Thybrid for the pre–recoding approach is given
by

Thybrid =
�
α ·Q
P

�
· P · L = α ·Q · L+ θ · L · P, (4)

with θ ∈ [0, 1).

E. Reed–Solomon Coding Approach
In order to compare our network coding approaches with

the state of the art, we use Reed–Solomon (RS) coding. There
are two ways of using Reed–Solomon in this context and the
first one will result in more traffic but makes sure the integrity
of the information will be always intact, while the second is
prone to loose information but using use less traffic, which is
comparable to our network coding approaches.

1) Fully controlled RS approach: Each of L clouds has to
retrieve any G segments from the remaining P parents, decode
the received segments if possible, and store the information
that was lost beforehand. This approach needs some overlay
control entity to organize that the L clouds are filled in the
correct way. The resulting traffic TRS,control in this case is

TRS,control = G · L, (5)

without taking into account for the extra signaling that
would be needed among the overlay control entity and all C
clouds.

An optimization in the amount of traffic generated is to
retrieve all G segments in of the L clouds and create the
missing L · Q segments and distribute the missing pieces to
the L− 1 clouds, so that the traffic equals

TRS,control = G+Q · (L− 1). (6)

This requires that the one of the L cloud storage devices
has also the capability to perform the required coding and has
enough computational power to do so.

2) Random RS approach: In contrast to the controlled
approach, we could forward randomly selected pieces to the
new clouds. Following the pre- and the post-recoding approach
for network coding, Reed–Solomon could also perform a
traffic aggressive or a traffic careful policy, sending either P ·Q
or only Q segments to each of the L new clouds, respectively.
The resulting traffic TRS,random here is therefore similar to
the traffic of the post and pre–recoding approach of network
coding given in Section III-D1 and III-D2, respectively, that
is

TRS,random = β · P ·Q · L, (7)

with β being either 1 (large traffic) or 1/P (low traffic).

F. Uncoded Approach
The uncoded approach used here is also used using random

filling as described for Reed–Solomon. Clearly, a carefully
planned scheduling approach would do better, but this would
require that we would always have access to sufficient number
of segments and ensure coordination. The approach is used for
comparison and not as a recommendation for use in a storage
system.

IV. IMPLEMENTATION

In order to undergo a performance evaluation the approaches
introduced beforehand have been implemented in a simulator.
The core of the simulator is the KODO library [8], an SDK
for network coding that supports different field sizes, namely
binary, linear extension fields 28 as well as 216, and one
optimal prime field (OPF) with 232 − 5. It also includes
an extension for Reed–Solomon (RS) codes, an important
feature to compare RLNC with codes used in state–of–the–
art systems. The simulator then is a flexible tool to visualize
the dynamics of the distributed clouds as well as running the
simulations with the given set of parameters.

The simulator is a platform independent application written
in Java. Since the KODO SDK is written in C++, method
calls and data access from Java are performed using the JNI
framework. We have implemented an intuitive user interface
to enable getting quick result for a particular set of parameter
values. The state of the system can be tracked on a round–by–
round basis using a graphical illustration. This gives a more
in–depth understanding of the processes in effect and allows
the replay of a certain scenario for closer inspection.

V. NUMERICAL RESULTS

In this section we provide numerical results for the ap-
proaches presented beforehand using the analytics and the sim-
ulation tool introduced beforehand. If not specified otherwise,
the field size F is chosen to be 28 and the number of storage
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Fig. 2. Traffic T versus number of available parents P for the different
strategies (L=1 Q=3 F=28 G=15).

entities to be replaced L is one. Furthermore the number of
segments for the original data is G = 15. Furthermore, the
number of clouds is C = 15, the number of storage segments
per cloud is Q = 10.

A. Traffic
Figure 2 shows the traffic T versus the number of parents P

for the different strategies described in Section III. We assume
again only one lost storage entity, thus L = 1. Therefore, the
controlled RS scheme has to retrieve any G = 20 segments
in order to restore the lost packets successfully. If too few
parents are available the controlled RS scheme may fail. In our
example to retrieve 20 segments we need at least 5 parents as
each parent contributes with Q = 4 segments. If fewer parents
are available the controlled RS scheme cannot be applied and
one of the RS random approaches should be used.

The post–recoding NC and the full random RS increase
the traffic T linearly with any additional parent. The pre–
recoding and the low random RS approach always ask for
a bare minimum to fill up the own storage Q and is therefore
independent from the number of parents in terms of traffic.
Obviously there is no gain in having more parents than actually
storage places. If P > Q only Q out of P parents will send
one segment.

B. Cloud integrity
In Figure 3 the cloud integrity versus the number of avail-

able parents and the number of storage place per cloud Q is
given for different coding strategies.

For the given results we assume to have only one cloud loss
L = 1 per round that needs to be repaired, which is the most
common case in data centers. With respect to Figure 3, the
first, second, and third column show the cloud integrity after
10, 100, or 1000 rounds, respectively.

The first row shows the uncoded approach. In Figure 3(a)
the cloud integrity can only be guaranteed for a large value

of the storage per cloud Q, which means high costs in
maintaining the cloud infrastructure. The number of parents
have a smaller impact. For larger rounds the probability to
retrieve the data is going towards zero.

The second row shows the random RS approach. For 10
rounds the cloud integrity can be assured by a small number
of parents (P ≥ 1) and a small number of storage (Q ≥ 2). For
100 rounds the cloud integrity is significantly decreased and
can only be assured by a large number of parents (P ≥ 3) and
a very large number of storage per cloud (Q ≥ 8). For 1000
rounds the cloud integrity can not be guaranteed anymore.

In the third and forth row the post and pre–recoding network
coding approaches are presented. Obviously both approach
yield better performance for the cloud integrity. Even for large
round numbers such as 1000 both approaches are still robust.
The differences for 10 rounds is not visible and both clouds
are intact for P ≥ 1 and Q ≥ 2. For 100 rounds the pre–
recoding approach can assure the integrity with P ≥ 2 and
Q ≥ 7 or with P ≥ 4 and Q ≥ 4 (optimal working point with
respect to cloud storage).

The post–recoding approach can assure the integrity with
P ≥ 2 and Q ≥ 5 (optimal working point with respect to
traffic) or with P ≥ 5 and Q ≥ 2 (optimal working point with
respect to cloud storage) after 100 rounds.

C. Impact of α
In order to optimize for the traffic the right choice of α

is crucial for the NC approaches. While post–recoding is
achieving the best success probability ps, it comes at the cost
of large traffic. Pre–recoding on the other side is producing
less traffic but does not yield good performance in terms of
cloud integrity. In this section results for different values of α
are presented and compared with the post and the pre–recoding
as given in Figure 4 (with a fixed value of Q = 4 and 10k
rounds).

Pre–recoding approach yields a very bad performance with
no chance of providing cloud integrity for any value of P . But
increasing the traffic slightly (as given in Figure 2 Hyb (0)
achieves significantly better results, i.e. with seven parents
P = 7 the cloud integrity could be achieved with T = 7.
Hyb (1) and Hyb (2) are improving the situation even slightly
requiring only six parents to achieve cloud integrity with
T = 7 and T = 8, respectively. Hyb (3) is then performing as
good as the post–recoding approach requiring only five parents
to assure cloud integrity with traffic value T = 8, which is
significant smaller than the full post–recoding approach with
T = 20.

D. Impact of the field size
In this section we shortly underline the impact of the field

size F . In Figure 5 the success probability ps is given versus
the number of parents for different field sizes for 10k rounds.
While the large field sizes 28, 216, and OPF (232 − 5) are
achieving nearly the same performance, the binary field size
is significantly worse. Larger field sizes need five or more
parents to restore the cloud information successfully, while the
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Fig. 3. Success probability ps to retrieve successfully the stored data in dependency of the number of parents P (equivalent to the cost in traffic) and the
redundancy factor R (equivalent to the cost in storage).

binary approach would need more than ten parents in the given
scenario. The reason to chose the binary field size anyway is
based on the low complexity it provides [9].

VI. DISCUSSION

With respect to the overall traffic that is conveyed among
the clouds, the uncoded, the random RS, and the pre–recoding
are using the minimum amount of traffic, barely enough to
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fill the new clouds. The post–recoding is using P–fold times
more traffic, while the hybrid approach is using only α times
more traffic than the bare minimum. The fully controlled RS
approach is using also more than the bare minimum if we
assume that G ≥ Q holds. In case of G = Q we would
just have a repetition code and we would not exploit the full
benefits of a real distributed cloud. In [7] we have shown that
distributing the data over four clouds lead to a speed up in
accessibility of 50% and therefore Q should be always smaller
than G.

The random linear network coding approaches better results
for the cloud integrity. The uncoded approach yields unaccept-
able results, while the random RS approach at least is stable
over the first rounds. The reason why the network coding
approaches are so stable even after a large number of rounds is
the recoding capability described in Section II. While the other
approaches are creating redundancy by introducing copies, the
network coding approach is refreshing the data in each round.

All discussed approach will yield better results if we allow
an overlay control unit to check each round which packets
have been stored and clean up the redundant information. Such
an overlay approach was proposed in [5], but this will have

a negative impact in delay and imposes more traffic to the
system.

VII. CONCLUSION

In this paper we introduced the implementation of a simula-
tion tool for distributed storage investigating the dynamics of a
distributed storage system. Applying several coding strategies
a performance evaluation has been carried out showing the
benefits of random linear network coding over traditional
codes and uncoded approaches. For a dynamic setting it was
shown that random linear network coding can preserve the
cloud integration even for a large number of changes without
any overlay entity in a distributed fashion. The paper presents
an in–depth evaluation of the traffic and storage cost to
preserve cloud integration. Results in this paper show that
random linear network coding outperforms Reed–Solomon
and uncoded approaches using a minimum in terms of traffic
and storage. For the network coding approaches different
strategies are investigated to optimize the cost of strange and
traffic. Furthermore parameters related to network coding are
investigated.
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