1,096 research outputs found

    The Local Ly-alpha Forest IV: STIS G140M Spectra and Results on the Distribution and Baryon Content of HI Absorbers

    Full text link
    We present HST STIS/G140M spectra of 15 extragalactic targets, which we combine with GHRS/G160M data to examine the statistical properties of the low-z Ly-alpha forest. We evaluate the physical properties of these Ly-alpha absorbers and compare them to their high-z counterparts. We determine that the warm, photoionized IGM contains 29+/-4% of the total baryon inventory at z = 0. We derive the distribution in column density, N_HI^(1.65+/-0.07) for 12.5 < log [N_HI] 14.5. The slowing of the number density evolution of high-W Ly-alpha clouds is not as great as previously measured, and the break to slower evolution may occur later than previously suggested (z~1.0 rather than 1.6). We find a 7.2sigma excess in the two-point correlation function (TPCF) of Ly-alpha absorbers for velocity separations less than 260 km/s, which is exclusively due to the higher column density clouds. From our previous result that higher column density Ly-alpha clouds cluster more strongly with galaxies, this TPCF suggests a physical difference between the higher and lower column density clouds in our sample.Comment: 71 pages, 6 tables, 26 EPS figures, to appear in ApJ Supplemen

    The Low-Redshift Intergalactic Medium

    Get PDF
    The low-redshift Ly-alpha forest of absorption lines provides a probe of large-scale baryonic structures in the intergalactic medium, some of which may be remnants of physical conditions set up during the epoch of galaxy formation. We discuss our recent Hubble Space Telescope (HST) observations and interpretation of low-z Ly-alpha clouds toward nearby Seyferts and QSOs, including their frequency, space density, estimated mass, association with galaxies, and contribution to Omega-baryon. Our HST/GHRS detections of 70 Ly-alpha absorbers with N_HI > 10^12.6 cm-2 along 11 sightlines covering pathlength Delta(cz) = 114,000 km/s show f(>N_HI) ~ N_HI^{-0.63 +- 0.04} and a line frequency dN/dz = 200 +- 40 for N_HI > 10^12.6 cm-2 (one every 1500 km/s of redshift). A group of strong absorbers toward PKS 2155-304 may be associated with gas (400-800) h_75^-1 kpc from 4 large galaxies, with low metallicity (< 0.003 solar) and D/H < 2 x 10^-4. At low-z, we derive a metagalactic ionizing radiation field from AGN of J_0 = 1.3^{+0.8 -0.5} x 10^-23 ergs/cm2/s/Hz/sr and a Ly-alpha-forest baryon density Omega-baryon = (0.008 +- 0.004) h_75^-1 [J_-23 N_14 b_100]^{1/2} For clouds of characteristic size b = (100 kpc)b_100.Comment: 5 figure

    Constraints on the Lyman continuum radiation from galaxies: first results with FUSE on Mrk 54

    Get PDF
    We present Far Ultraviolet Spectroscopic Explorer observations of the star-forming galaxy Mrk 54 at z = 0.0448. The Lyman continuum radiation is not detected above the HI absorption edge in our Galaxy. An upper limit is evaluated by comparison with the background measured in regions of the detector adjacent to the observed spectrum. A spectral window of 16 A, reasonably free of additional HI Lyman series line absorption is used. No correction is needed for molecular hydrogen absorption in our Galaxy but a foreground extinction of 0.29 mag is accounted for. An upper limit of 6.15 10^{-16} erg/cm^2/s/A is obtained for the flux at ~ 900 A in the rest frame of Mrk 54. By comparison with the number of ionizing photons derived from the H-alpha flux, this limit translates into an upper limit of f_esc < 0.062 for the fraction of Lyman continuum photons that escape the galaxy without being absorbed by interstellar material. This limit compares with the limits obtained in three other nearby galaxies and is compatible with the escape fractions predicted by models. The upper limits obtained in nearby galaxies contrasts with the detection of Lyman continuum flux in the composite spectrum of Lyman-break galaxies at z ~ 3.4. The difficulties and implications of a comparison are discussed.Comment: 9 pages, 3 figures, accepted for publication in A&A include aa.cls v5.0

    Variations of Interstellar Gas-to-Dust Ratios at High Galactic Latitudes

    Full text link
    Interstellar dust at high Galactic latitudes can influence astronomical foreground subtraction, produce diffuse scattered light, and soften the ultraviolet spectra of quasars. In a sample of 94 sight lines toward quasars at high latitude and low extinction, we evaluate the interstellar "gas-to-dust ratio" NH/E(B−V)N_{\rm H}/E(B-V), using hydrogen column densities (H I and H2_2) and far-infrared estimates of dust reddening. In the Galactic plane, this ratio is 6.0±0.26.0\pm0.2 (in units of 1021 cm−2 mag−110^{21}~{\rm cm}^{-2}~{\rm mag}^{-1}). On average, recent Planck estimates of E(B−V)E(B-V) in low-reddening sight lines are 12% higher than those from Schlafly & Finkbeiner (2011), and NHIN_{\rm HI} exhibits significant variations when measured at different radio telescopes. In a sample of 51 quasars with measurements of both H I and H2_2 and 0.01≀E(B−V)â‰Č0.10.01 \leq E(B-V) \lesssim 0.1, we find mean ratios 10.3±0.410.3\pm0.4 (gas at all velocities) and 9.2±0.39.2\pm0.3 (low velocity only) using Planck E(B−V)E(B-V) data. High-latitude H2_2 fractions are generally small (2-3% on average), although 9 of 39 sight lines at ∣bâˆŁâ‰„40∘|b| \geq 40^{\circ} have fH2f_{\rm H2} of 1-17%. Because FIR-inferred E(B−V)E(B-V) is sensitive to modeled dust temperature TdT_d and emissivity index ÎČ\beta, gas-to-dust ratios have large, asymmetric errors at low E(B−V)E(B-V). The ratios are elevated in sight lines with high-velocity clouds, which contribute NHN_{\rm H} but little reddening. In Complex C, the ratio decreases by 40% when high velocity gas is excluded. Decreases in dust content are expected in low-metallicity gas above the Galactic plane, resulting from grain destruction in shocks, settling to the disk, and thermal sputtering in hot halo gas.Comment: Minor changes, accepted to Astrophysical Journal, 37 pages, 7 tables, 8 figure

    The Local Lyman-Alpha Forest: Absorbers in Galaxy Voids

    Full text link
    We have conducted pointed redshift surveys for galaxies in the direction of bright AGN whose HST far-UV spectra contain nearby (cz <~ 30,000 kms), low column density (12.5 <= log N_{HI} (cm s^{-2}) <= 14.5) Ly-alpha forest absorption systems. Here we present results for four lines-of-sight which contain nearby (cz <~ 3000 kms) Ly-alpha absorbers in galaxy voids. Although our data go quite deep (-13 <= M_{B}(limit) <= -14) out to impact parameters of 100-250 h_{70}^{-1} kpc, these absorbers remain isolated and thus appear to be truly intergalactic, rather than part of galaxies or their halos. Since we and others have discovered no galaxies in voids, the only baryons detected in the voids are in the Ly-alpha ``clouds''. Using a photoionization model for these clouds, the total baryonic content of the voids is 4.5% +/- 1.5% of the mean baryon density.Comment: 5 pages, 1 figure, accepted for publication in Astrophysical Journal Letter

    The Metallicity of Intergalactic Gas in Cosmic Voids

    Full text link
    We have used the Hubble/STIS and FUSE archives of ultraviolet spectra of bright AGN to identify intergalactic Lya absorbers in nearby (z < 0.1) voids. From a parent sample of 651 Lya absorbers, we identified 61 void absorbers located more than 1.4/h_70 Mpc from the nearest L* or brighter galaxy. Searching for metal absorption in high-quality (S/N > 10) spectra at the location of three diagnostic metal lines (O VI 1032, C IV 1548, Si III 1206), we detected no metal lines in any individual absorber, or in any group of absorbers using pixel co-addition techniques. The best limits on metal-line absorption in voids were set using four strong Lya absorbers with N(H I) > 10^{14} cm^-2, with 3-sigma equivalent-width limits ranging from 8 mA (O VI), 7-15 mA (C IV), and 4-10 mA (Si III). Photoionization modeling yields metallicity limits Z < 10^{-1.8+/-0.4} Z_sun, from non-detections of C IV and O VI, some 6 times lower than those seen in Lya and OVI absorbers at z < 0.1. Although the void Lya absorbers could be pristine material, considerably deeper spectra are required to rule out a universal metallicity floor produced by bursts of early star formation, with no subsequent star formation in the voids. The most consistent conclusion derived from these low-z results, and similar searches at z = 3-5, is that galaxy filaments have increased their mean IGM metallicity by factors of 30-100 since z = 3.Comment: Accepted for ApJ, 8 pages including Fig 1a,

    The Metagalactic Ionizing Radiation Field at Low Redshift

    Get PDF
    We compute the ionizing radiation field at low redshift, arising from Seyferts, QSOs, and starburst galaxies. This calculation combines recent Seyfert luminosity functions, extrapolated ultraviolet fluxes from our IUE-AGN database, and a new intergalactic opacity model based on Hubble Space Telescope and Keck Ly-alpha absorber surveys. At z = 0 for AGN only, our best estimate for the specific intensity at 1 Ryd is I_0 = 1.3 (+0.8/-0.5) x 10^-23 ergs/cm^2/s/Hz/sr, independent of H_0, Omega_0, and Lambda. The one-sided ionizing photon flux is Phi_ion = 3400 (+2100/-1300) photons/cm^2/s, and the H I photoionization rate is Gamma_HI = 3.2 (+2.0/-1.2) x 10^-14 s^-1 for alpha_s = 1.8. We also derive Gamma_ HI for z = 0 - 4. These error ranges reflect uncertainties in the spectral indexes for the ionizing EUV (alpha_s = 1.8 +/- 0.3) and the optical/UV (alpha_UV = 0.86 +/- 0.05), the IGM opacity model, the range of Seyfert luminosities (0.001 - 100 L*) and the completeness of the luminosity functions. Our estimate is a factor of three lower than the most stringent upper limits on the ionizing background (Phi_ion < 10^4 photons/cm^2/s) obtained from H-alpha observations in external clouds, and it lies within the range implied by other indirect measures. Starburst galaxies with a sufficiently large Lyman continuum escape fraction, f_ esc > 0.05, may provide a comparable background to AGN, I_0 (z=0) = 1.1 (+1.5/-0.7) x 10^{-23). An additional component of the ionizing background of this magnitude would violate neither upper limits from H-alpha observations nor the acceptable range from other measurements.Comment: 30 pages, 9 figures, accepted for Astronomical J. (Oct. 1999
    • 

    corecore