645 research outputs found

    Superconductivity in CoO2_2 Layers and the Resonating Valence Bond Mean Field Theory of the Triangular Lattice t-J model

    Get PDF
    Motivated by the recent discovery of superconductivity in two dimensional CoO2_2 layers, we present some possibly useful results of the RVB mean field theory applied to the triangular lattice. Away from half filling, the order parameter is found to be complex, and yields a fully gapped quasiparticle spectrum. The sign of the hopping plays a crucial role in the analysis, and we find that superconductivity is as fragile for one sign as it is robust for the other. Nax_xCoO2â‹…y_2\cdot yH2_2O is argued to belong to the robust case, by comparing the LDA Fermi surface with an effective tight binding model. The high frequency Hall constant in this system is potentially interesting, since it is pointed out to increase linearly with temperature without saturation for T >> Tdegeneracy_{degeneracy}.Comment: Published in Physical Review B, total 1 tex + 9 eps files. Erratum added as separate tex file on November 7, 2003, a numerical factor corrected in the erratum on Dec 3, 200

    The su(N) XX model

    Full text link
    The natural su(N) generalization of the XX model is introduced and analyzed. It is defined in terms of the characterizing properties of the usual XX model: the existence of two infinite sequences of mutually commuting conservation laws and the existence of two infinite sequences of mastersymmetries. The integrability of these models, which cannot be obtained in a degenerate limit of the su(N)-XXZ model, is established in two ways: by exhibiting their R matrix and from a direct construction of the commuting conservation laws. We then diagonalize the conserved laws by the method of the algebraic Bethe Ansatz. The resulting spectrum is trivial in a certain sense; this provides another indication that the su(N) XX model is the natural generalization of the su(2) model. The application of these models to the construction of an integrable ladder, that is, an su(N) version of the Hubbard model, is mentioned.Comment: 16 pages, TeX and harvmac (option b). Minor corrections, accepted for publication in Nuclear Physics

    A Class of Parameter Dependent Commuting Matrices

    Get PDF
    We present a novel class of real symmetric matrices in arbitrary dimension dd, linearly dependent on a parameter xx. The matrix elements satisfy a set of nontrivial constraints that arise from asking for commutation of pairs of such matrices for all xx, and an intuitive sufficiency condition for the solvability of certain linear equations that arise therefrom. This class of matrices generically violate the Wigner von Neumann non crossing rule, and is argued to be intimately connected with finite dimensional Hamiltonians of quantum integrable systems.Comment: Latex, Added References, Typos correcte

    Kinetic Antiferromagnetism in the Triangular Lattice

    Get PDF
    We show that the motion of a single hole in the infinite UU Hubbard model with frustrated hopping leads to weak metallic antiferromagnetism of kinetic origin. An intimate relationship is demonstrated between the simplest versions of this problem in 1 and 2 dimensions, and two of the most subtle many body problems, namely the Heisenberg Bethe ring in 1-d and the 2-dimensional triangular lattice Heisenberg antiferromagnet.Comment: 10 pages, 2 figures, 5 supplementary figures; Figures fixe

    Including a phase in the Bethe equations of the Hubbard model

    Get PDF
    We compute the Bethe equations of generalized Hubbard models, and study their thermodynamical limit. We argue how they can be connected to the ones found in the context of AdS/CFT correspondence, in particular with the so-called dressing phase problem. We also show how the models can be interpreted, in condensed matter physics, as integrable multi-leg Hubbard models.Comment: 30 page

    Response of rice varieties to short-day treatment

    Get PDF
    Synchronisation of flowering was effected in fifty rice varieties, ranging from early to very late duration, by giving 8 light hours photoperiod to 30 days old seedlings for 20 days. The results showed that the later the type, the greater was its response to photoperiod and regression value of photoperiod response over the normal duration of the varieties was approximately 1.0

    PreMa: Predictive Maintenance of Solenoid Valve in Real-Time at Embedded Edge-Level

    Full text link
    In industrial process automation, sensors (pressure, temperature, etc.), controllers, and actuators (solenoid valves, electro-mechanical relays, circuit breakers, motors, etc.) make sure that production lines are working under the pre-defined conditions. When these systems malfunction or sometimes completely fail, alerts have to be generated in real-time to make sure not only production quality is not compromised but also safety of humans and equipment is assured. In this work, we describe the construction of a smart and real-time edge-based electronic product called PreMa, which is basically a sensor for monitoring the health of a Solenoid Valve (SV). PreMa is compact, low power, easy to install, and cost effective. It has data fidelity and measurement accuracy comparable to signals captured using high end equipment. The smart solenoid sensor runs TinyML, a compact version of TensorFlow (a.k.a. TFLite) machine learning framework. While fault detection inferencing is in-situ, model training uses mobile phones to accomplish the `on-device' training. Our product evaluation shows that the sensor is able to differentiate between the distinct types of faults. These faults include: (a) Spool stuck (b) Spring failure and (c) Under voltage. Furthermore, the product provides maintenance personnel, the remaining useful life (RUL) of the SV. The RUL provides assistance to decide valve replacement or otherwise. We perform an extensive evaluation on optimizing metrics related to performance of the entire system (i.e. embedded platform and the neural network model). The proposed implementation is such that, given any electro-mechanical actuator with similar transient response to that of the SV, the system is capable of condition monitoring, hence presenting a first of its kind generic infrastructure

    Fermionic R-Operator and Integrability of the One-Dimensional Hubbard Model

    Full text link
    We propose a new type of the Yang-Baxter equation (YBE) and the decorated Yang-Baxter equation (DYBE). Those relations for the fermionic R-operator were introduced recently as a tool to treat the integrability of the fermion models. Using the YBE and the DYBE for the XX fermion model, we construct the fermionic R-operator for the one-dimensional (1D) Hubbard model. It gives another proof of the integrability of the 1D Hubbard model. Furthermore a new approach to the SO(4) symmetry of the 1D Hubbard model is discussed.Comment: 25 page

    The Origin of Degeneracies and Crossings in the 1d Hubbard Model

    Get PDF
    The paper is devoted to the connection between integrability of a finite quantum system and degeneracies of its energy levels. In particular, we analyze in detail the energy spectra of finite Hubbard chains. Heilmann and Lieb demonstrated that in these systems there are crossings of levels of the same parameter independent symmetry. We show that this apparent violation of the Wigner-von Neumann noncrossing rule follows directly from the existence of nontrivial conservation laws and is a characteristic signature of quantum integrability. The energy spectra of Hubbard chains display many instances of permanent (at all values of the coupling) twofold degeneracies that cannot be explained by parameter independent symmetries. We relate these degeneracies to the different transformation properties of the conserved currents under spatial reflections and the particle-hole transformation and estimate the fraction of doubly degenerate states. We also discuss multiply degenerate eigenstates of the Hubbard Hamiltonian. The wave functions of many of these states do not depend on the coupling, which suggests the existence of an additional parameter independent symmetry.Comment: 25 pages, 12 figure

    Magnetization plateaux in an extended Shastry-Sutherland model

    Full text link
    We study an extended two-dimensional Shastry-Sutherland model in a magnetic field where besides the usual Heisenberg exchanges of the Shastry-Sutherland model two additional SU(2) invariant couplings are included. Perturbative continous unitary transformations are used to determine the leading order effects of the additional couplings on the pure hopping and on the long-range interactions between the triplons which are the most relevant terms for small magnetization. We then compare the energy of various magnetization plateaux in the classical limit and we discuss the implications for the two-dimensional quantum magnet SrCu2_2(BO3_3)2_2.Comment: 8 pages, Proceedings of the HFM2008 Conferenc
    • …
    corecore