
PRL 95, 087202 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
19 AUGUST 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications of the IAS Fellows
Kinetic Antiferromagnetism in the Triangular Lattice

Jan O. Haerter and B. Sriram Shastry
Physics Department, University of California, Santa Cruz, California 95064, USA

(Received 25 May 2005; published 19 August 2005)
0031-9007=
We show that the motion of a single hole in the infinite-U Hubbard model with frustrated hopping leads
to weak metallic antiferromagnetism of kinetic origin. An intimate relationship is demonstrated between
the simplest versions of this problem in one and two dimensions, and two of the most subtle many body
problems, namely, the Heisenberg Bethe ring in one dimension and the two-dimensional triangular lattice
Heisenberg antiferromagnet.
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The role of kinetic energy in the theory of magnetism is
crucial: while virtual processes promote antiferromagne-
tism in insulators, as in the theory of superexchange, real
(or direct) kinetic processes usually promote ferromagne-
tism as a corollary of metallicity, as in the theory of double
exchange [1,2]. The Nagaoka Thouless (NT) theorem [3,4]
is of great importance in providing a rigorous mechanism
for metallic ferromagnetism, notwithstanding the limita-
tions of its context: that of a single hole in the limit of
infinite repulsion. In this Letter we study the latter problem
on certain 1D and 2D lattices with electronic frustration, a
term defined by computing the sign of the hopping ampli-
tudes around the smallest closed loop of a lattice, in
complete parallel to the more familiar spin counterpart. If
the sign is negative then the lattice is said to be electroni-
cally frustrated, the NT theorem applies only to the non-
frustrated cases; our focus is on the frustrated cases where
not much is known reliably. We find surprisingly that in
these cases the real kinetic processes promote antiferro-
magnetism in the metallic phase.

Our immediate motivation for studying electronically
frustrated lattices is to understand the physics of materials
such as the recently found sodium cobalt oxide system
NaxCoO2 [5]. We present some analytical and numerical
results for the one hole frustrated problem. Our main
analytical tool is a novel reduction of the problem to an
effective spin model, which yields insights into the phys-
ics. We have supplemented this with a numerical study
using exact diagonalization of the effective spin problem,
exploiting the symmetries of the clusters. Following the
numerical work on the triangular lattice Heisenberg model
(HM) by Bernu et al. [6], we compute the exact eigenval-
ues in different total spin sectors for clusters of various
sizes, and this leads to ‘‘towers of excitations.’’ These help
one to distinguish between spin liquid states and various
ordered states, something that variational studies cannot
quite do [7]. Our findings are consistent with a three-
sublattice broken spin symmetric ground state, very similar
to that of the triangular lattice HM [6,8].

We study periodic clusters of the infinite-U Hubbard
model with L sites and N � L� 1 particles with H �
05=95(8)=087202(4)$23.00 08720
��i;j;	ti;jc
y
~Rj;	
c ~Ri;	, where c ~Ri;	 are Gutzwiller projected

fermions with single occupancy constraint built into them.
Because of the periodicity, we may define a wave vector ~k
for each wave function, and consider the action of H in a
fixed ~k subspace. Let us locate the hole at site ~Ri0 , and write
a basis state j�i � cy~R1;	 ~R1

cy~R2;	 ~R2

. . . cy~RN;	 ~RN

j0i. A generic

state may be written as  � ~k; �� � 1���
L

p �~re�i
~k	~r�T~rj�i, where

T~r is a (spatial) translation operator T~rc
y
~Ri;	
Ty
~r � cy~Ri
~r;	

.

Exploiting the translation invariance of the Hamiltonian,
the matrix element of H in such a state is expressible in
terms of an effective ~k dependent operator

h�jH~k
effj�i �

X
~�

t ~�e
�i ~�	 ~kh�jT ~�c ~Ri0� ~�;	c

y
~Ri0;	

j�i: (1)

In this frame of reference, we hold the hole at a fixed site,
as the entire set of spins flows past it. While this reduction
is suggestive, it is not yet equivalent to finding an effective
spin exchange representation, since the translation opera-
tors carry the complexity of fermionic negative signs. We
can make considerable progress in specific problems as
follows.

One dimension.—Let us first consider the general 1D
case with arbitrary range of hopping tr. Let the hole reside
at the Lth site, so that the L� 1 � N particles occupy sites
1 ! N with some spin configuration j	1; . . .	Ni �

cy1;	1
cy2;	2

. . . cyN;	N j0i. Operating with terms in H shifting

the hole to its left, we find tL;j��1��L�j�cy1;	1
. . . cyj�1;	j�1



cyj
1;	j
1
. . . cyN;	Nc

y
L;	j

j0i. We next restore the hole to the

Lth site from the jth site, so we need to translate by r �
L� j units. This gives rise to negative signs that can be
calculated readily, and the answer written down in terms of
the permutation operator Pi;j �

1
2 
 2 ~Si 	 ~Sj, and spin

translation operator T � P1;2P2;3 . . .PN�1;N acting as a
cyclic permutation on a lattice of length N as

Hk
eff �

X
r

��1�r�L�r��tre�ikrPr;r
1 . . .P2;3P1;2�T �r
H:c:�:
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FIG. 1. 1D structure function g�y; t0� of Ht;t0 for various t0

compared to the NN Heisenberg (HH) and Haldane-Shastry
(HHS) model. In the limit t0 ! 0, Ht;t0 correlations converge to
those of HH. Inset: 2D size dependence of the structure function
on 2D triangular lattice for Hubbard and Heisenberg [6] models
denoted by solid triangles and open circles. The solid squares are
the ground state energy of Heff .
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The sum is over the range of hopping, thus the spin prob-
lem is defined on a periodic ring of length N rather than
L � N 
 1. In the simplest frustrated case we consider a
model with nearest and second neighbor hopping t1 � t,
t2 � t0 with both t; t0 > 0. This (railroad trestle) lattice may
be considered a strip of the triangular lattice. For this case,
and with L odd, the effective Hamiltonian is

Ht;t0

k � te�ikT 
 t0e�2ikP1;2�T �2 
 H:c:; (2)

the full spectrum is obtained by varying k. The hole has
been eliminated, and we arrive at an impurity bond model
residing on the deleted lattice of L� 1 sites. The first term
of Eq. (2) bodily translates all spin configurations, hence
all spin states remain degenerate. The second term dis-
criminates between the configurations through the single
exchange term P1;2.

The ground state of Eq. (2) was found numerically for
rings up to L � 19. L is taken to be odd to allow for the
possibility of singlet ground states, and indeed in all cases,
the ground state is a singlet [9]. The correlation functions
are found by imposing periodic boundary conditions with
length N [10]. These alternate in sign and seem to decay as
a power law for small t0=t, changing to a faster and possibly
exponential decay at large t0=t. This behavior is remi-
niscent of that of the HM with a second neighbor inter-
action, Hh�J1�n

~Sn 	 ~Sn
1
J2�n
~Sn 	 ~Sn
2. Here it is

known [11] that the Bethe point J2 � 0 has power law
decay along with a logarithmic correction to the correla-

tions so that asymptotically C�r�� 1
N�i�1;Nh ~Si 	 ~Si
ri�

��1�rf A
jrj


B�logjrj�1=2

jrj g
O�1=r2� [10]. The logarithmic
term arises from the umklapp term, and B varies with J2
within a power law phase persisting up to J�2=J1 � :24,
beyond which there is a gap in the spectrum. To compare
with this behavior, we compute the structure function
g�y; t0� � �N

r�1��1�rC�r�. Plotted as a function of y �
logN in the power law phase, it is expected to be a sum
of two terms, one �y from A, and another �y3=2 from the
logarithmic term B. For various values of t0 we show g as
function of y in Fig. 1. We also display the corresponding
structure functions on the same lattice sizes for the nearest
neighbor (NN) HM �J2 � 0� and the Haldane-Shastry (HS)
model [12] which has B � 0. It is clear that the small
t0=t cases are very similar to the nn Heisenberg model,
whereas the case of t0=t large appear to be gapped. We
note that in the limit t0 ! 0
, the structure function g
approaches the corresponding value for the HM. Remark-
ably enough, the individual correlation functions C�r�
approach those for the NN HM to the available precision
(6 decimal places). Taking a closer look, we studied the
wave functions for small clusters (up to L � 13). We found
that the ground state of the impurity model, when trans-
lated as �r exp�iPr��T �rjimpurity gsi with an appropriate
(Marshall sign) momentum P � 0�$� for N=2 even (odd),
becomes the exact ground state of the Heisenberg model.
Based on these results we conjecture that the t0 ! 0
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impurity model ground state after translation becomes
the Bethe ground state of the Heisenberg ring. Finite t0

seems related to further ranged exchange on a smaller scale
than t0 [i.e., o�t0�]. We thus find that the impurity spin
model may be regarded loosely as the HM, with a scaled
down exchange Jeff � t0=N to make meaningful compari-
sons of energetics.

The triangular lattice.—In two dimensions the effective
Hamiltonian equation (1) can again be reduced to a spin
operator. Let us imagine a two dimensional rhomboidal
lattice with N1 columns and M1 rows (L � N1M1) and the
topology of a torus. We consider a particular term where
the hole has hopped to the site ~Ri0 �

~�i, and the translation

is along ~�i so as to restore the hole to the fixed site ~Ri0 . It is

enough to consider half the ~�i’s corresponding to forward
hops, the back hops contribute to the Hermitian conjugate.
The translation is expressible as a specific permutation of
the L� 1 � �N1M1 � 1� variables ~Rl written in some
specific order. This permutation can be decomposed into
ci cycles, each of length lm so that �mlm � L� 1. The
translation operator T ~�i accumulates phase factors of
��1�lm�1 from each cycle relative to the pure spin trans-
lation operator T ~�i

, and one extra minus sign arises from
the row containing the hole, so that the overall phase factor
is ���1��m�lm�1� � ��1�L�ci , and hence

Hk
eff �

X
i

ft ~�i��1�L�cie�i ~k	 ~�iT ~�i

 H:c:g: (3)
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FIG. 2. (a)–(b) Clusters with 21 (27) sites. Symbols corre-
spond to different subspaces: k-momentum eigenvalue numbered
in increasing magnitude of k, (b) solid (open) symbols corre-
spond to * � �1 (* � 1). (c) The frustrated 21-site cluster,
zero-momentum states (k0 � 0) emphasized.
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For the triangular lattice we note that ~� � x̂ gives ci � M1,
i.e., the number of rows, ~� � 1

2 x̂

��
3

p

2 ŷ gives ci � N1, i.e.,

the number of columns. In the case of the third hop ~� �

� 1
2 x̂


��
3

p

2 ŷ, ci depends upon the relative primeness of N1

and M1 but is trivial to compute for any given cluster once
and for all. The translations T act only on the spin labels,
and satisfy T ~�i

cy~R;	 ~R

T y
~�i
� cy~R;	 ~R
 ~�i

for ~R � ~R0 
 ~�i, and

T ~�i
cy~R0

~
 ~�i;	 ~R0

~�i

T y
~�i
� cy~R0
 ~�i;	 ~R� ~�i

, i.e., is a unit spin

translator along the ~�i direction for all sites except the
one nearest to the hole where it shifts by two units.

To gain insight into the type of magnetic ordering in the
triangular lattice we have performed exact diagonalization
of small clusters [13]. We exploit the translation and
rotation invariance by working with the deleted lattice in
the subspace with Sz � 0. We also use time reversal in-
variance so that under a global transformation 	j ! �	j,
its eigenvalues are * � �1. We find that if �L� 1�=2 is
odd (even) the even spin states have * � �1�1�, the odd
spin states the opposite value.

We contrast systems either supporting or frustrating
three-sublattice order. In particular, we choose systems of
9, 21, and 27 sites which support three-sublattice order
[13]. The 3 3 cluster displays high spatial symmetry
which is reflected by a sevenfold degenerate ground state,
one of which is a singlet which lies in the (k � 0, * � 1)
sector. Because of its small size and geometry, in this
cluster, every nearest neighbor is also a second neighbor
and the third neighbor is the site itself. Thus, three-
sublattice order is forced by the boundary conditions in
this cluster. We found a vanishing of the fluctuation of the
operator Q � �hi;ji� ~Si 	 ~Sj � ninj=4� in the singlet ground
state. This curious result implies that within the t-J model,
both the contributions to the Hamiltonian share a common
ground state for this cluster. In terms of the deleted lattice,
the ground state of Heff is exactly the ground state of the
NN HM. Next, we compute the spectra of the 21- and 27-
site clusters. We found that the states corresponding to ~k �
~0 or ~Q� � 4$

3 x̂were found to be lower in energy and nearly
degenerate. This can be attributed to a unit cell tripling, as
one expects in case of three-sublattice order. We find in
Fig. 2 a systematic behavior of the excitations, in close
parallel to those for the triangular lattice HM [6]. One can
define a ‘‘moment of inertia’’ [6] I as the inverse of the
slope of the line joining the bottoms of the different Stot
towers of excitations. Our moment of inertia I � L2 as
compared to the Heisenberg value �L, again understand-
ably in view of the extensivity of the latter model, and
suggests Jeff � t=L. A noteworthy feature is the striking
‘‘subgap’’ in each tower, this separates the ground state
from the excitations that start out sparsely and then seem to
form a continuum. A very similar feature in the HM has
been identified with the magnons [6] with an energy scale
! � cjkj � 1=

����
L

p
, and seems equally relevant here. In the
08720
21-site cluster the states corresponding to three vectors k1,
k2, and k3 are all very close in energy. This can be under-
stood in terms of a 1st Brillouin zone (BZ) diminished in
size by 1=3 as these three momentum vectors are placed in
equal distances from the corners of this new 1st BZ. In the
27-site cluster, the picture is very similar. Again, the ~k � ~0
or ~Q� states are clearly separated from the rest of the
spectrum. The family of first excited states is constituted
by the momenta k1, k3, and k4, which are now vectors that
lie exactly on the corners of the diminished 1st BZ. In this
cluster, a second family of excited states emerges, which is
populated by states belonging to the k2 subspace. This
vector lies in the center of the neighboring diminished
1st BZ in the y direction of k0. This point corresponds to
a state of half the wave number of the classical Néel state
and is the least ‘‘compatible’’ with the three-sublattice
scenario, thus leading to the highest excitation energy.

We also studied system of 15 and 21 sites, which frus-
trate the three-sublattice order through their particular
choice of boundary conditions [13]. We found that the
energies of the frustrated clusters are considerably higher
than for the unfrustrated ones. For 21 sites we can compare
these directly: they are respectively �4:08 577 and
�4:18 233, thereby showing the clear preference for
three-sublattice order. In plot (c) of Fig. 2 we compare
the tower of states obtained for this frustrated 21-site
cluster. The regular features described above are now
perturbed, the zero-momentum states no longer constitute
the ground states of the different spin sectors and the
quasidegeneracy can no longer be identified. This scenario
is similar to that obtained by a HM with an additional 4-site
ring exchange term [14].
2-3
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We also calculated the structure function S� ~q� �

�i;j exp�i ~q 	 � ~ri � ~rj��h ~Si 	 ~Sji=L. It is useful to identify

v �
�������������������������������
S� ~Q��=�L
 6�

q
as the physical order parameter,

with the same normalizations as in the HM [6]. The clus-
ters compatible with three-sublattice order contain the
wave vector ~Q� value, unlike the frustrated clusters.
While the compatible clusters show a clear peak for
S� ~Q��, the frustrated clusters still show a peak at the q
vector closest to ~Q�. Thus, three-sublattice order is likely
to be dominant in arbitrary systems and is not an artifact of
a biased choice of boundary conditions. For the compatible
systems we plot in the inset of Fig. 1, v vs L�1=2, and
compare with results for the HM obtained in [6], normal-
izing to the maximum possible value of S� ~Q��. Extrapo-
lation to infinite system size suggests a substantial finite
intercept (�0:849). This shows strong similarities with the
studies on the HM [6], and suggests Néel long range order
originating solely from the motion of a single hole in a spin
background.

In the inset of Fig. 1 we also plot the ground state energy.
The small system size and high symmetry of the 9-site
cluster leads to a fairly large ground state energy while the
21- and 27-site clusters appear to show rapid convergence;
we estimate Egs � �4:183� 0:005. On the square lattice,
this swift convergence has also been observed by Poilblanc
et al. [15]. Finally, the impurity model allows us to study
the nature of the spin texture surrounding the hole [13]. In
the (unfrustrated) hexagon surrounding the hole, we find
substantial alternating antiferromagnetic order h ~Si 	 ~Sji �
�0:34 similar in magnitude and nature to that observed for
a HM on a square lattice [16]. This local impurity-order
rapidly transitions into three-sublattice antiferromagnetic
correlations at greater distances from the hole. Thus, the
hole can be seen as a moving impurity around which spins
tend to line up antiferromagnetically.

In conclusion, we have argued for kinetic antiferromag-
netism on frustrated lattices. The preference for antiferro-
magnetism arises from the subtle phase dependence of the
kinetic motion. Hole hopping mimics the effect of anti-
ferromagnetic exchange energy, with the scale of a single
impurity exchange bond per hole. The remarkable map-
ping to the Bethe ring in one dimension and close similar-
ity with the HM on triangular lattice highlight this subtle
phenomenon. Our effect should be most prominent in
situations where superexchange is negligible. At least
qualitatively used, as in Ref. [17], our findings can thus
08720
be interpreted as leading to weak antiferromagnetism with
Jeff �
cxjtj in the case of the frustrated lattices, where x
is the hole concentration.
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