58 research outputs found

    Immigration ensures population survival in the Siberian flying squirrel

    Get PDF
    Linking dispersal to population growth remains a challenging task and is a major knowledge gap, for example, for conservation management. We studied relative roles of different demographic rates behind population growth in Siberian flying squirrels in two nest-box breeding populations in western Finland. Adults and offspring were captured and individually identifiable. We constructed an integrated population model, which estimated all relevant annual demographic rates (birth, local [apparent] survival, and immigration) as well as population growth rates. One population (studied 2002-2014) fluctuated around a steady-state equilibrium, whereas the other (studied 1995-2014) showed a numerical decline. Immigration was the demographic rate which showed clear correlations to annual population growth rates in both populations. Population growth rate was density dependent in both populations. None of the demographic rates nor the population growth rate correlated across the two study populations, despite their proximity suggesting that factors regulating the dynamics are determined locally. We conclude that flying squirrels may persist in a network of uncoupled subpopulations, where movement between subpopulations is of critical importance. Our study supports the view that dispersal has the key role in population survival of a small forest rodent

    Siberian flying squirrels do not anticipate future resource abundance

    Get PDF
    Background: One way to cope with irregularly occurring resources is to adjust reproduction according to the anticipated future resource availability. In support of this hypothesis, few rodent species have been observed to produce, after the first litter born in spring, summer litters in anticipation of autumn's seed mast. This kind of behaviour could eliminate or decrease the lag in population density normally present in consumer dynamics. We focus on possible anticipation of future food availability in Siberian flying squirrels, Pteromys volans. We utilise long-term data set on flying squirrel reproduction spanning over 20 years with individuals living in nest-boxes in two study areas located in western Finland. In winter and early spring, flying squirrels depend on catkin mast of deciduous trees. Thus, the temporal availability of food resource for Siberian flying squirrels is similar to other mast-dependent rodent species in which anticipatory reproduction has been observed.Results: We show that production of summer litters was not related to food levels in the following autumn and winter. Instead, food levels before reproduction, in the preceding winter and spring, were related to production of summer litters. In addition, the amount of precipitation in the preceding winter was found to be related to the production of summer litters.Conclusions: Our results support the conclusion that Siberian flying squirrels do not anticipate the mast. Instead, increased reproductive effort in female flying squirrels is an opportunistic event, seized if the resource situation allows

    Role of breeding and natal movements in lifetime dispersal of a forest-dwelling rodent

    Get PDF
    The lifetime movements of an individual determine the gene flow and invasion potential of the species. However, sex dependence of dispersal and selective pressures driving dispersal have gained much more attention than dispersal at different life and age stages. Natal dispersal is more common than dispersal between breeding attempts, but breeding dispersal may be promoted by resource availability and competition. Here, we utilize mark-recapture data on the nest-box population of Siberian flying squirrels to analyze lifetime dispersal patterns. Natal dispersal means the distance between the natal nest and the nest used the following year, whereas breeding movements refer to the nest site changes between breeding attempts. The movement distances observed here were comparable to distances reported earlier from radio-telemetry studies. Breeding movements did not contribute to lifetime dispersal distance and were not related to variation in food abundance or habitat patch size. Breeding movements of males were negatively, albeit not strongly, related to male population size. In females, breeding movement activity was low and was not related to previous breeding success or to competition between females for territories. Natal philopatry was linked to apparent death of a mother; that is, we did not find evidence for mothers bequeathing territories for offspring, like observed in some other rodent species. Our results give an example of a species in which breeding movements are not driven by environmental variability or nest site quality. Different evolutionary forces often operate in natal and breeding movements, and our study supports the view that juveniles are responsible for redistributing individuals within and between populations. This emphasizes the importance of knowledge on natal dispersal, if we want to understand consequences of movement ecology of the species at the population level

    Sex-specific patterns in body mass and mating system in the Siberian flying squirrel

    Get PDF
    Background Reproductive strategies and evolutionary pressures differ between males and females. This often results in size differences between the sexes, and also in sex-specific seasonal variation in body mass. Seasonal variation in body mass is also affected by other factors, such as weather. Studies on sex-specific body mass patterns may contribute to better understand the mating system of a species. Here we quantify patterns underlying sex-specific body mass variation using a long-term dataset on body mass in the Siberian flying squirrel, Pteromys volans. Results We show that female flying squirrels were larger than males based on body mass and other body measures. Males had lowest body mass after the breeding season, whereas female body mass was more constant between seasons, when the pregnancy period was excluded. Male body mass did not increase before the mating season, despite the general pattern that males with higher body mass are usually dominant in squirrel species. Seasonal body mass variation was linked to weather factors, but this relationship was not straightforward to interpret, and did not clearly affect the trend in body mass observed over the 22 years of study. Conclusions Our study supports the view that arboreal squirrels often deviate from the general pattern found in mammals for larger males than females. The mating system seems to be the main driver of sex-specific seasonal body mass variation in flying squirrels, and conflicting selective pressure may occur for males to have low body mass to facilitate gliding versus high body mass to facilitate dominance. </div

    The effect of landscape structure on dispersal distances of the Eurasian red squirrel

    Get PDF
    Landscape structure can affect dispersal and gene flow in a species. In urban areas, buildings, roads, and small habitat patches make the landscape highly fragmented and can inhibit movement and affect dispersal behavior. Similarly, in rural forested areas, large open areas, such as fields, may act as barriers to movement. We studied how landscape structure affects natal dispersal distances of Eurasian red squirrels (Sciurus vulgaris) in an urban area and a rural area in Finland, by monitoring juvenile red squirrels with radio telemetry. We observed extremely long dispersal distancesup to 16kmin the rural study area, but shorter distanceson average only half a kilometerin the urban study area. The landscape structure affected the eventual dispersal paths; in the rural landscape, dispersers favored spruce dominated areas and avoided fields along their dispersal route, although they occasionally even crossed wide fields. In the urban landscape, squirrels preferred areas with deciduous or coniferous trees. The movement steps made by dispersers were longer in the more hostile landscape compared to forested areas. Despite these effects on movement path, the landscape structure only had a minor effect on straight line dispersal distances moved from the natal nest. In other words, individuals moved longer distances and were likely to circumvent barriers in their path, but this did not affect how far they settled from their natal home. This result indicates that, although landscape structure has obvious effects on movement, it still may have only a small effect on other aspects of the population, for example, gene flow

    Population dynamics of two beaver species in Finland inferred from citizen-science census data

    Get PDF
    A species' distribution and abundance in both space and time play a pivotal role in ecology and wildlife management. Collection of such large-scale information typically requires engagement of volunteer citizens and tends to consist of non-repeated surveys made with a survey effort varying over space and time. We here used a hierarchical single-census open population N-mixture model, which was recently developed to handle such challenging census data, to describe the dynamics in the Finnish population sizes of the reintroduced native Eurasian beaver (Castor fiber) and the invasive North American beaver (Castor canadensis). The numbers of beaver winter lodges (i.e., family groups) were counted by volunteers in the municipalities of Finland every third year during 1995-2013. The dynamics of both species followed Gompertz logistic growth with immigration. Initial abundance of North American beavers increased with proximity to the introduction sites as well as with the amount of water in the municipality. The intensively hunted North American beaver population declined and the Eurasian beaver population increased during the study period. The model generated reasonable estimates of both total Finnish and local numbers of lodges, corrected for the incomplete detection. We conclude that the single-census N-mixture model approach has clear potential when using citizen-science data for understanding spatio-temporal dynamics of wild populations

    Within-season changes in habitat use of forest-dwelling boreal bats

    Get PDF
    Bats utilize forests as roosting sites and feeding areas. However, it has not been documented how bats utilize these habitats in the boreal zone with methods afforded by recent technological advances. Forest structure and management practices can create a variety of three-dimensional habitats for organisms capable of flight, such as bats. Here, we study the presence of boreal bats in a forest forming a mosaic of different age classes, dominant tree species, canopy cover, soil fertility, and other environmental variables, throughout their active season in the summer using passive ultrasound detectors. Our results indicate a preference for mature forest by Eptesicus nilssonii and a pooled set of Myotis bats. Both groups of bats also showed temporal changes in their habitat use regarding forest age. In June and July, both groups occurred more often in mature than young forests, but from August onwards, the difference in occurrence became less evident in Myotis and disappeared completely in E. nilssonii. In addition, E. nilssonii was more often present in forests with low canopy cover, and its occurrence shifted from coniferous forests to deciduous forests during the season. The results reflect the within-season dynamics of bat communities and their ability to utilize different types of forest as environmental conditions change. Yet, the results most importantly emphasize the importance of mature forests to bat diversity and the need to conserve such environments in the boreal zone.Peer reviewe

    The effect of buffer strip width and selective logging on streamside plant communities

    Get PDF
    Abstract Background Riparian forests surrounding streams host high biodiversity values, but are threatened by clear-cut logging. Narrow buffer strips of about 15 m are commonly left between the stream and the clear-cut, but studies suggest that the buffer width should be at least 30 m to protect riparian plant communities. Moreover, selective logging is often allowed on the buffer strips in order to increase economic gain. We used an experiment of 43 riparian sites where buffer strip width and selective logging within the strip were manipulated and supplemented with unlogged control sites. We report the short-term changes in the community composition of vascular plants and mosses near the stream (0–15 m distance). Results 15-meter buffers are not enough to protect the vascular plant communities from changes caused by a clear-cut irrespective of the selective logging on the buffer strip. For moss communities 15-m buffers were not enough if they were selectively logged. Relative to the control sites, we observed no significant changes in community composition of vascular plants or mosses in the sites with 30-m buffer strips, whether selectively logged or not. Conclusions We conclude that buffer strips of 15 m are not sufficient to protect streamside plant communities even in the short term, but that buffers of 30 m should be left on both sides of the stream. Selective logging appears not to have effects on buffers that are at least 30 m wide. Thus, it may be more reasonable to increase buffer width and to allow selective logging on the wider buffer in order to compensate for the economic losses than to leave all trees on a narrow and ecologically insufficient buffer

    Invasive species control with apex predators: increasing presence of wolves is associated with reduced occurrence of the alien raccoon dog

    Get PDF
    The role of an alien predator in the community depends on its interaction with native predators. The absence of apex predators may facilitate outbreaks of invasive mesopredators, but the effect of apex predators may vary between species and environments. We analysed the occurrence of a common invasive mesopredator in Europe, the raccoon dog (Nyctereutes procyonoides), and native mesopredators, the red fox and the Eurasian badger, in camera-trap data from Finland. The observations in cameras were analysed in relation to the presence of apex predators in the landscape (grey wolf and Eurasian lynx), human density, and habitat. We observed negative effect of increasing presence of wolves and lynxes on the occurrence of raccoon dogs. This effect appeared clear compared to the effects of habitat and human density. The effect of lynxes on raccoon dogs was clearer in areas with short growth season. For the occurrence of badgers, the presence of wolves had a weak negative effect and the presence of lynxes had a positive effect. For the occurrence of red foxes, wolves had a positive effect when agricultural fields were sparse in the landscape and lynxes had no effect. We also observed that the invasive raccoon dog currently appears to be the most common mesopredator within the study area. We conclude that the effect of apex predators on mesopredators depends on the environment and, in our case, was more suppressive on the alien mesopredator than on the native mesopredators. Thus, apex predators can play an important role in controlling invasive mesopredators
    • …
    corecore