27 research outputs found

    User-initialized active contour segmentation and golden-angle real-time cardiovascular magnetic resonance enable accurate assessment of LV function in patients with sinus rhythm and arrhythmias

    Get PDF
    BACKGROUND: Data obtained during arrhythmia is retained in real-time cardiovascular magnetic resonance (rt-CMR), but there is limited and inconsistent evidence to show that rt-CMR can accurately assess beat-to-beat variation in left ventricular (LV) function or during an arrhythmia. METHODS: Multi-slice, short axis cine and real-time golden-angle radial CMR data was collected in 22 clinical patients (18 in sinus rhythm and 4 patients with arrhythmia). A user-initialized active contour segmentation (ACS) software was validated via comparison to manual segmentation on clinically accepted software. For each image in the 2D acquisitions, slice volume was calculated and global LV volumes were estimated via summation across the LV using multiple slices. Real-time imaging data was reconstructed using different image exposure times and frame rates to evaluate the effect of temporal resolution on measured function in each slice via ACS. Finally, global volumetric function of ectopic and non-ectopic beats was measured using ACS in patients with arrhythmias. RESULTS: ACS provides global LV volume measurements that are not significantly different from manual quantification of retrospectively gated cine images in sinus rhythm patients. With an exposure time of 95.2 ms and a frame rate of > 89 frames per second, golden-angle real-time imaging accurately captures hemodynamic function over a range of patient heart rates. In four patients with frequent ectopic contractions, initial quantification of the impact of ectopic beats on hemodynamic function was demonstrated. CONCLUSION: User-initialized active contours and golden-angle real-time radial CMR can be used to determine time-varying LV function in patients. These methods will be very useful for the assessment of LV function in patients with frequent arrhythmias

    Parallel MR imaging

    No full text
    Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of MR imaging. Parallel imaging works by acquiring a reduced amount of k ‐space data with an array of receiver coils. These undersampled data can be acquired more quickly, but the undersampling leads to aliased images. One of several parallel imaging algorithms can then be used to reconstruct artifact‐free images from either the aliased images (SENSE‐type reconstruction) or from the undersampled data (GRAPPA‐type reconstruction). The advantages of parallel imaging in a clinical setting include faster image acquisition, which can be used, for instance, to shorten breath‐hold times resulting in fewer motion‐corrupted examinations. In this article the basic concepts behind parallel imaging are introduced. The relationship between undersampling and aliasing is discussed and two commonly used parallel imaging methods, SENSE and GRAPPA, are explained in detail. Examples of artifacts arising from parallel imaging are shown and ways to detect and mitigate these artifacts are described. Finally, several current applications of parallel imaging are presented and recent advancements and promising research in parallel imaging are briefly reviewed

    Three-dimensional through-time radial GRAPPA for renal MR angiography

    No full text
    Purpose To achieve high temporal and spatial resolution for contrast-enhanced time-resolved MR angiography exams (trMRAs), fast imaging techniques such as non-Cartesian parallel imaging must be used. In this study, the three-dimensional (3D) through-time radial generalized autocalibrating partially parallel acquisition (GRAPPA) method is used to reconstruct highly accelerated stack-of-stars data for time-resolved renal MRAs. Materials and Methods Through-time radial GRAPPA has been recently introduced as a method for non-Cartesian GRAPPA weight calibration, and a similar concept can also be used in 3D acquisitions. By combining different sources of calibration information, acquisition time can be reduced. Here, different GRAPPA weight calibration schemes are explored in simulation, and the results are applied to reconstruct undersampled stack-of-stars data. Results Simulations demonstrate that an accurate and efficient approach to 3D calibration is to combine a small number of central partitions with as many temporal repetitions as exam time permits. These findings were used to reconstruct renal trMRA data with an in-plane acceleration factor as high as 12.6 with respect to the Nyquist sampling criterion, where the lowest root mean squared error value of 16.4% was achieved when using a calibration scheme with 8 partitions, 16 repetitions, and a 4 projection ⁽×⁾ 8 read point segment size. Conclusion 3D through-time radial GRAPPA can be used to successfully reconstruct highly accelerated non-Cartesian data. By using in-plane radial undersampling, a trMRA can be acquired with a temporal footprint less than 4s/frame with a spatial resolution of approximately 1.5 mm ⁽×⁾ 1.5 mm ⁽×⁾ 3 mm

    IR TrueFISP with a golden-ratio-based radial readout: Fast quantification of T1, T2, and proton density

    No full text
    A promising approach for the simultaneous quantification of relative proton density (M0), T1, and T2 is the inversion-recovery TrueFISP sequence, consisting of an inversion pulse followed by a series of balanced steady-state free precession acquisitions. Parameters can then be obtained from a mono-exponential fit to the series of images. However, a segmented acquisition is usually necessary, which increases the total acquisition time considerably. The goal of this study is to obtain M0, T1, and T2 maps using a single-shot acquisition, with T1 and T2 measurements in brain that are consistent with the published literature, with a 20-fold speed improvement over the segmented approach, and at a clinically relevant spatial resolution. To this end, a single-shot inversion-recovery TrueFISP sequence was combined with a radial view-sharing technique. The parameters M0, T1, and T2 were then obtained on a pixel-wise basis from a three fit parameter to the signal evolution. The accuracy of this method for quantifying these parameters is demonstrated in vivo. In addition, further corrections to the quantification necessary owing to other experimental factors, namely magnetization transfer and imperfect slice profiles, were developed. Including additional scans necessary for these corrections in the measurement protocol, the required scan time is increased from approximately 6 to 18-28 s per slice

    Validation of Tissue Characterization in Mixed Voxels Using MR Fingerprinting

    No full text
    In conventional weighted MRI, the presence of multiple species within a single voxel can alter signal intensity. However, it remains difficult to determine the species content which gives rise to this intensity change due to similarity in exponential-shaped signal evolutions. The uniqueness of signal evolutions generated through Magnetic Resonance Fingerprinting (MRF) allows for the identification of multiple species present within a single voxel. Here we demonstrate that MRF is able to resolve multiple material components from single, mixed voxels and validate the derived tissue fractions in a realistic simulation model

    Partial volume mapping using magnetic resonance fingerprinting

    No full text
    Magnetic resonance fingerprinting (MRF) is a quantitative imaging technique that maps multiple tissue properties through pseudorandom signal excitation and dictionary-based reconstruction. The aim of this study is to estimate and validate partial volumes from MRF signal evolutions (PV-MRF), and to characterize possible sources of error. Partial volume model inversion (pseudoinverse) and dictionary-matching approaches to calculate brain tissue fractions (cerebrospinal fluid, gray matter, white matter) were compared in a numerical phantom and seven healthy subjects scanned at 3 T. Results were validated by comparison with ground truth in simulations and ROI analysis in vivo. Simulations investigated tissue fraction errors arising from noise, undersampling artifacts, and model errors. An expanded partial volume model was investigated in a brain tumor patient. PV-MRF with dictionary matching is robust to noise, and estimated tissue fractions are sensitive to model errors. A 6% error in pure tissue T1 resulted in average absolute tissue fraction error of 4% or less. A partial volume model within these accuracy limits could be semi-automatically constructed in vivo using k-means clustering of MRF-mapped relaxation times. Dictionary-based PV-MRF robustly identifies pure white matter, gray matter and cerebrospinal fluid, and partial volumes in subcortical structures. PV-MRF could also estimate partial volumes of solid tumor and peritumoral edema. We conclude that PV-MRF can attribute subtle changes in relaxation times to altered tissue composition, allowing for quantification of specific tissues which occupy a fraction of a voxel

    30-minute CMR for common clinical indications: a Society for Cardiovascular Magnetic Resonance white paper

    Get PDF
    Abstract Background Despite decades of accruing evidence supporting the clinical utility of cardiovascular magnetic resonance (CMR), adoption of CMR in routine cardiovascular practice remains limited in many regions of the world. Persistent use of long scan times of 60 min or more contributes to limited adoption, though techniques available on most scanners afford routine CMR examination within 30 min. Incorporating such techniques into standardize protocols can answer common clinical questions in daily practice, including those related to heart failure, cardiomyopathy, ventricular arrhythmia, ischemic heart disease, and non-ischemic myocardial injury. Body In this white paper, we describe CMR protocols of 30 min or shorter duration with routine techniques with or without stress perfusion, plus specific approaches in patient and scanner room preparation for efficiency. Minimum requirements for the scanner gradient system, coil hardware and pulse sequences are detailed. Recent advances such as quantitative myocardial mapping and other add-on acquisitions can be incorporated into the proposed protocols without significant extension of scan duration for most patients. Conclusion Common questions in clinical cardiovascular practice can be answered in routine CMR protocols under 30 min; their incorporation warrants consideration to facilitate increased access to CMR worldwide.http://deepblue.lib.umich.edu/bitstream/2027.42/173833/1/12968_2022_Article_844.pd
    corecore