17,319 research outputs found
The Chaotic Regime of D-Term Inflation
We consider D-term inflation for small couplings of the inflaton to matter
fields. Standard hybrid inflation then ends at a critical value of the inflaton
field that exceeds the Planck mass. During the subsequent waterfall transition
the inflaton continues its slow-roll motion, whereas the waterfall field
rapidly grows by quantum fluctuations. Beyond the decoherence time, the
waterfall field becomes classical and approaches a time-dependent minimum,
which is determined by the value of the inflaton field and the self-interaction
of the waterfall field. During the final stage of inflation, the effective
inflaton potential is essentially quadratic, which leads to the standard
predictions of chaotic inflation. The model illustrates how the decay of a
false vacuum of GUT-scale energy density can end in a period of `chaotic
inflation'.Comment: 15 pages, 6 figures. v3: matches version published in JCA
Operational benefits from the terminal configured vehicle
The NASA Terminal Configured Vehicle is a flying laboratory used to conduct research and development on improved airborne systems (including avionics) and operational flight procedures, with particular emphasis on utilization in the terminal area environment. The objectives of this technology development activity, focused on conventional transport aircraft, are to develop and demonstrate improvements which can lead to increased airport and runway capacity, increased air traffic controller productivity, energy efficient terminal area operations, reduced weather minima with safety, and reduced community noise by use of appropriate procedures. This paper discusses some early results of this activity in addition to defining present efforts and future research plans
A High Efficiency Lateral Light Emitting Device on SOI
The infrared light emission of lateral p/sup +/-p-n/sup +/ diodes realized on SIMOX-SOI (separation by implantation of oxygen - silicon on insulator) substrates has been studied. The confinement of the free carriers in one dimension due to the buried oxide was suggested to be a key point to increase the band-to-band recombination probability in silicon light emitters. We found in our devices an external quantum efficiency comparable to previous results presented in the literature. The wavelength range of the emission was found to be 900-1300 nm which is common for indirect band to band recombination in Si. The SOI technology incorporates an insulating layer between the thin single crystal silicon layer and the much thicker substrate. This electrically insulating layer is also a thermal isolator and so self-heating effects are common in devices fabricated on SOI wafers. Investigation of its influence on the light emission and the light distribution in the device has been carried out in our research. In this paper, the characteristics of the device with different active region lengths were investigated and explained quantitatively based on the recombination rate of carriers inside the active area by using the simulation model in Silvaco
High-Performance Deep SubMicron CMOS Technologies with Polycrystalline-SiGe Gates
The use of polycrystalline SiGe as the gate material for deep submicron CMOS has been investigated. A complete compatibility to standard CMOS processing is demonstrated when polycrystalline Si is substituted with SiGe (for Ge fractions below 0.5) to form the gate electrode of the transistors. Performance improvements are achieved for PMOS transistors by careful optimization of both transistor channel profile and p-type gate workfunction, the latter by changing Ge mole fraction in the gate. For the 0.18 Âżm CMOS generation we record up to 20% increase in the current drive, a 10% increase in the channel transconductance and subthreshold swing improvement from 82 mV/dec to 75 mV/dec resulting in excellent ÂżonÂż/ÂżoffÂż currents ratio. At the same time, NMOS transistor performance is not affected by gate material substitutio
Correlation between electric-field-induced phase transition and piezoelectricity in lead zirconate titanate films
We observed that electric field induces phase transition from tetragonal to
rhombohedral in polycrystalline morphotropic lead zirconate titanate (PZT)
films, as reported in 2011 for bulk PZT. Moreover, we evidenced that this
field-induced phase transition is strongly correlated with PZT film
piezoelectric properties, that is to say the larger the phase transition, the
larger the longitudinal piezoelectric coefficient d 33,eff . Although d 33,eff
is already comprised between as 150 to 170 pm/V, our observation suggests that
one could obtain larger d 33,eff values, namely 250 pm/V, by optimizing the
field-induced phase transition thanks to composition fine tuning
The effect of initial conditions on the electromagnetic radiation generation in type III solar radio bursts
Copyright 2013 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Physics of Plasmas 20, 062903 (2013) and may be found at .Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [D. Tsiklauri, Phys. Plasmas, 18, 052903 (2011)]. The numerical simulations were carried out using different density profiles and fast electron distribution functions. It is shown that electromagnetic L and R modes are excited by the transverse current, initially imposed on the system. In the course of the simulations no further interaction of the electron beam with the background plasma could be observed
Numerical electrokinetics
A new lattice method is presented in order to efficiently solve the
electrokinetic equations, which describe the structure and dynamics of the
charge cloud and the flow field surrounding a single charged colloidal sphere,
or a fixed array of such objects. We focus on calculating the electrophoretic
mobility in the limit of small driving field, and systematically linearise the
equations with respect to the latter. This gives rise to several subproblems,
each of which is solved by a specialised numerical algorithm. For the total
problem we combine these solvers in an iterative procedure. Applying this
method, we study the effect of the screening mechanism (salt screening vs.
counterion screening) on the electrophoretic mobility, and find a weak
non-trivial dependence, as expected from scaling theory. Furthermore, we find
that the orientation of the charge cloud (i. e. its dipole moment) depends on
the value of the colloid charge, as a result of a competition between
electrostatic and hydrodynamic effects.Comment: accepted for publication in Journal of Physics Condensed Matter
(proceedings of the 2012 CODEF conference
Practical Experiences with LSAFT
The synthetic aperture focussing techniques are known to be a powerful tool in analyzing defects. Instead of the two dimensional SAFT which is developed in [1], a simpler version has been realized where a manipulator moves a probe or a couple of probes along one line only. Therefore the processed image is a B-scan image beneath that scanned line pointing in the insonification direction. First experiments have been made during an exchange program NRC-BMFT [2] at the end of 1980 at Southwest-Research-Institute at San Antonio, Texas. Based upon that work a new system has been developed at IzfP called HOLOSAFT [3], where the LSAFT part plays an important role in the evaluation of depth extension, flaw inclination and positioning. During the past years more than 5000 LSAFT scans have been recorded and evaluated using either pulse echo technique or tandem, longitudinal waves or shear waves. In the following the new data acquisition and evaluation system will be explained in detail and the practical experience with the LSAFT imaging system will be reported
- …