1,507 research outputs found

    Tracking quintessence and k-essence in a general cosmological background

    Get PDF
    We derive conditions for stable tracker solutions for both quintessence and k-essence in a general cosmological background, H^2 \propto f(\rho). We find that tracker solutions are possible only when \eta = d ln f /d ln \rho is constant, aside from a few special cases, which are enumerated. Expressions for the quintessence or k-essence equation of state are derived as a function of \eta and the equation of state of the dominant background component.Comment: 6 pages, no figure

    Comprehensive maximum likelihood estimation of diffusion compartment models towards reliable mapping of brain microstructure

    Get PDF
    open4siDiffusion MRI is a key in-vivo non invasive imaging capability that can probe the microstructure of the brain. However,its limited resolution requires complex voxelwise generative models of the diffusion. Diffusion Compartment (DC) models divide the voxel into smaller compartments in which diffusion is homogeneous. We present a comprehensive framework for maximum likelihood estimation (MLE) of such models that jointly features ML estimators of (i) the baseline MR signal,(ii) the noise variance,(iii) compartment proportions,and (iv) diffusion-related parameters. ML estimators are key to providing reliable mapping of brain microstructure as they are asymptotically unbiased and of minimal variance. We compare our algorithm (which efficiently exploits analytical properties of MLE) to alternative implementations and a state-of-theart strategy. Simulation results show that our approach offers the best reduction in computational burden while guaranteeing convergence of numerical estimators to the MLE. In-vivo results also reveal remarkably reliable microstructure mapping in areas as complex as the centrum semiovale. Our ML framework accommodates any DC model and is available freely for multi-tensor models as part of the ANIMA software (https://github.com/Inria-Visages/Anima-Public/wiki).Stamm, Aymeric; Commowick, Olivier; Warfield, Simon K.; Vantini, SimoneStamm, Aymeric; Commowick, Olivier; Warfield, Simon K.; Vantini, Simon

    The Effect of Time Variation in the Higgs Vacuum Expectation Value on the Cosmic Microwave Background

    Get PDF
    A time variation in the Higgs vacuum expectation value alters the electron mass and thereby changes the ionization history of the universe. This change produces a measurable imprint on the pattern of cosmic microwave background (CMB) fluctuations. The nuclear masses and nuclear binding energies, as well as the Fermi coupling constant, are also altered, with negligible impact on the CMB. We calculate the changes in the spectrum of the CMB fluctuations as a function of the change in the electron mass. We find that future CMB experiments could be sensitive to |\Delta m_e/m_e| \sim |\Delta G_F/G_F| \sim 10^{-2} - 10^{-3}. However, we also show that a change in the electron mass is nearly, but not exactly, degenerate with a change in the fine-structure constant. If both the electron mass and the fine-structure constant are time-varying, the corresponding CMB limits are much weaker, particularly for l < 1000.Comment: 6 pages, 3 figures, Fig. 3 modified, other minor correction

    Aetherizing Lambda: Barotropic Fluids as Dark Energy

    Full text link
    We examine the class of barotropic fluid models of dark energy, in which the pressure is an explicit function of the density, p = f(\rho). Through general physical considerations we constrain the asymptotic past and future behaviors and show that this class is equivalent to the sum of a cosmological constant and a decelerating perfect fluid, or "aether", with w_{AE}\ge0. Barotropic models give substantially disjoint predictions from quintessence, except in the limit of \LambdaCDM. They are also interesting in that they simultaneously can ameliorate the coincidence problem and yet "predict" a value of w\approx-1.Comment: 6 pages; v2 matches PRD published versio

    The Interaction of New and Old Magnetic Fluxes at the Beginning of Solar Cycle 23

    Get PDF
    The 11-year cycle of solar activity follows Hale's law by reversing the magnetic polarity of leading and following sunspots in bipolar regions during the minima of activity. In the 1996-97 solar minimum, most solar activity emerged in narrow longitudinal zones - `active longitudes' but over a range in latitude. Investigating the distribution of solar magnetic flux, we have found that the Hale sunspot polarity reversal first occurred in these active zones. We have estimated the rotation rates of the magnetic flux in the active zones before and after the polarity reversal. Comparing these rotation rates with the internal rotation inferred by helioseismology, we suggest that both `old' and `new' magnetic fluxes were probably generated in a low-latitude zone near the base of the solar convection zone. The reversal of active region polarity observed in certain longitudes at the beginning of a new solar cycle suggests that the phenomenon of active longitudes may give fundamental information about the mechanism of the solar cycle. The non-random distribution of old-cycle and new-cycle fluxes presents a challenge for dynamo theories, most of which assume a uniform longitudinal distribution of solar magnetic fields.Comment: 4 pages, 5 figures; accepted for publication in ApJ Letter

    On Random Bubble Lattices

    Full text link
    We study random bubble lattices which can be produced by processes such as first order phase transitions, and derive characteristics that are important for understanding the percolation of distinct varieties of bubbles. The results are relevant to the formation of topological defects as they show that infinite domain walls and strings will be produced during appropriate first order transitions, and that the most suitable regular lattice to study defect formation in three dimensions is a face centered cubic lattice. Another application of our work is to the distribution of voids in the large-scale structure of the universe. We argue that the present universe is more akin to a system undergoing a first-order phase transition than to one that is crystallizing, as is implicit in the Voronoi foam description. Based on the picture of a bubbly universe, we predict a mean coordination number for the voids of 13.4. The mean coordination number may also be used as a tool to distinguish between different scenarios for structure formation.Comment: several modifications including new abstract, comparison with froth models, asymptotics of coordination number distribution, further discussion of biased defects, and relevance to large-scale structur

    Nonstoichiometric doping and Bi antisite defect in single crystal Bi2Se3

    Full text link
    We studied the defects of Bi2Se3 generated from Bridgman growth of stoichiometric and nonstoichiometric self-fluxes. Growth habit, lattice size, and transport properties are strongly affected by the types of defect generated. Major defect types of Bi_Se antisite and partial Bi_2-layer intercalation are identified through combined studies of direct atomic-scale imaging with scanning transmission electron microscopy (STEM) in conjunction with energy-dispersive X-ray spectroscopy (STEM-EDX), X-ray diffraction, and Hall effect measurements. We propose a consistent explanation to the origin of defect type, growth morphology, and transport property.Comment: 5 pages, 5 figure

    Solvable K-essence Cosmologies and Modified Chaplygin Gas Unified Models of Dark Energy and Dark Matter

    Full text link
    This paper is devoted to the investigation of modified Chaplygin gas model in the context of solvable k-essence cosmologies. For this purpose, we construct equations of state parameter of this model for some particular values of the parameter nn. The graphical behavior of these equations are also discussed by using power law form of potential. The relationship between k-essence and modified Chaplygin gas model shows viable results in the dark energy scenario. We conclude that the universe behaves as a cosmological constant, quintessence phase or phantom phase depending upon nn.Comment: 14 pages, 6 figure

    Crossing Phantom Boundary in f(R)f(R) Modified Gravity : Jordan Frame vs Einstein Frame

    Full text link
    We study capability of f(R)f(R) gravity models to allow crossing the phantom boundary in both Jordan and Einstein conformal frames. In Einstein frame, these models are equivalent to Einstein gravity together with a scalar field minimally coupled to gravity. This scalar degree of freedom appears as a quintessence field with a coupling with the matter sector. We investigate evolution of the equation of sate parameter for some cosmologically viable f(R)f(R) gravity models in both conformal frames. This investigation (beyond mere theoretical arguments) acts as an operational tool to distinguish physical status of the two conformal frames. It shows that the two conformal frames have not the same physical status.Comment: 13 Pages, 4 figs., To appear in Gravitation and Cosmolog

    Estimating Temperature Fluctuations in the Early Universe

    Full text link
    A lagrangian for the k−k- essence field is constructed for a constant scalar potential and its form determined when the scale factor was very small compared to the present epoch but very large compared to the inflationary epoch. This means that one is already in an expanding and flat universe. The form is similar to that of an oscillator with time-dependent frequency. Expansion is naturally built into the theory with the existence of growing classical solutions of the scale factor. The formalism allows one to estimate fluctuations of the temperature of the background radiation in these early stages (compared to the present epoch) of the universe. If the temperature at time tat_{a} is TaT_{a} and at time tbt_{b} the temperature is TbT_{b} (tb>tat_{b}>t_{a}), then for small times, the probability for the logarithm of inverse temperature evolution can be estimated to be given by P(b,a)=∣⟨ln (1Tb),tb∣ln (1Ta),ta⟩∣2P(b,a)= |\langle ln~({1\over T_{b}}),t_{b}| ln~({1\over T_{a}}),t_{a}\rangle|^{2} ≈(3mPl2π2(tb−ta)3)(ln Ta)2(ln Tb)2(1−3γ(ta+tb))\approx\biggl({3m_{\mathrm Pl}^{2}\over \pi^{2} (t_{b}-t_{a})^{3}}\biggr) (ln~ T_{a})^{2}(ln~T_{b})^{2}\biggl(1 - 3\gamma (t_{a} + t_{b})\biggr) where 0<γ<10<\gamma<1, mPlm_{\mathrm Pl} is the Planck mass and Planck's constant and the speed of light has been put equal to unity. There is the further possibility that a single scalar field may suffice for an inflationary scenario as well as the dark matter and dark energy realms.Comment: 8 pages, Revtex, title,abstract and format changed for journal publication,no change in basic results, clarifications and a figure added. Keywords: physics of the early universe,inflation, dark matter theory, dark energy theory. PACS: 95.35.+d ; 95.36.+x ; 98.80.Cq ; 98.80.-
    • …
    corecore