1,890 research outputs found

    Response functions of an artificial Anderson atom in the atomic limit

    Full text link
    We consider the spin and pseudospin (charge) response functions of the exactly soluble Anderson atom model. We demonstrate, in particular, that a deviation from the magnetic Curie-law behaviour, appropriate for a free spin one-half, increases with increasing asymmetry and temperature. In general, oscillator strength is transferred from the spin degrees of freedom to the pseudospin modes. We also consider the negative-U Anderson atom and demonstrate that the pseudospin modes are the relevant low-energy excitations in this case. Especially, the roles of the spin and charge excitations are interchanged upon reversal of the intrasite Coulomb repulsion, U.Comment: 23 pages, 12 figures. Accepted for publication in J. Low Temp. Phy

    Motion of vortices in ferromagnetic spin-1 BEC

    Get PDF
    The paper investigates dynamics of nonsingular vortices in a ferromagnetic spin-1 BEC, where spin and mass superfluidity coexist in the presence of uniaxial anisotropy (linear and quadratic Zeeman effect). The analysis is based on hydrodynamics following from the Gross-Pitaevskii theory. Cores of nonsingular vortices are skyrmions with charge, which is tuned by uniaxial anisotropy and can have any fractal value between 0 and 1. There are circulations of mass and spin currents around these vortices. The results are compared with the equation of vortex motion derived earlier in the Landau-Lifshitz-Gilbert theory for magnetic vortices in easy-plane ferromagnetic insulators. In the both cases the transverse gyrotropic force (analog of the Magnus force in superfluid and classical hydrodynamics) is proportional to the charge of skyrmions in vortex cores.Comment: 19 pages, 2 figures, to be published in the special issue of Fizika Nizkikh Temperatur dedicated to A.M.Kosevich. arXiv admin note: substantial text overlap with arXiv:1801.0109

    Internal Magnus effects in superfluid 3A

    Get PDF
    Orbital angular momentum of the coherently aligned Cooper pairs in superfluid 3A is encountered by an object immersed in the condensate. We evaluate the associated quasiparticle-scattering asymmetry experienced by a negative ion; this leads to a measureable, purely quantum-mechanical reactive force deflecting the ion’s trajectory. Possible hydrodynamic Magnus effects are also discussed.Peer reviewe

    Additive decomposability of functions over abelian groups

    Get PDF
    Abelian groups are classified by the existence of certain additive decompositions of group-valued functions of several variables with arity gap 2.Comment: 17 page

    Collective Oscillations of Vortex Lattices in Rotating Bose-Einstein Condensates

    Full text link
    The complete low-energy collective-excitation spectrum of vortex lattices is discussed for rotating Bose-Einstein condensates (BEC) by solving the Bogoliubov-de Gennes (BdG) equation, yielding, e.g., the Tkachenko mode recently observed at JILA. The totally symmetric subset of these modes includes the transverse shear, common longitudinal, and differential longitudinal modes. We also solve the time-dependent Gross-Pitaevskii (TDGP) equation to simulate the actual JILA experiment, obtaining the Tkachenko mode and identifying a pair of breathing modes. Combining both the BdG and TDGP approaches allows one to unambiguously identify every observed mode.Comment: 5 pages, 4 figure

    Fermions on half-quantum vortex

    Full text link
    The spectrum of the fermion zero modes in the vicinity of the vortex with fractional winding number is discussed. This is inspired by the observation of the 1/2 vortex in high-temperature superconductors (Kirtley, et al, Phys. Rev. Lett. 76 (1996) 1336). The fractional value of the winding number leads to the fractional value of the invariant, which describes the topology of the energy spectrum of fermions. This results in the phenomenon of the "half-crossing": the spectrum approaches zero but does not cross it, being captured at the zero energy level. The similarity with the phenomenon of the fermion condensation is discussed.Comment: In revised version the discussion is extended and 4 references are added. The paper is accepted for publication in JETP Letters. 10 pages, LaTeX file, 3 figures are available at ftp://boojum.hut.fi/pub/publications/lowtemp/LTL-96004.p

    On the effect of variable identification on the essential arity of functions

    Get PDF
    We show that every function of several variables on a finite set of k elements with n>k essential variables has a variable identification minor with at least n-k essential variables. This is a generalization of a theorem of Salomaa on the essential variables of Boolean functions. We also strengthen Salomaa's theorem by characterizing all the Boolean functions f having a variable identification minor that has just one essential variable less than f.Comment: 10 page

    Mutation of Directed Graphs -- Corresponding Regular Expressions and Complexity of Their Generation

    Full text link
    Directed graphs (DG), interpreted as state transition diagrams, are traditionally used to represent finite-state automata (FSA). In the context of formal languages, both FSA and regular expressions (RE) are equivalent in that they accept and generate, respectively, type-3 (regular) languages. Based on our previous work, this paper analyzes effects of graph manipulations on corresponding RE. In this present, starting stage we assume that the DG under consideration contains no cycles. Graph manipulation is performed by deleting or inserting of nodes or arcs. Combined and/or multiple application of these basic operators enable a great variety of transformations of DG (and corresponding RE) that can be seen as mutants of the original DG (and corresponding RE). DG are popular for modeling complex systems; however they easily become intractable if the system under consideration is complex and/or large. In such situations, we propose to switch to corresponding RE in order to benefit from their compact format for modeling and algebraic operations for analysis. The results of the study are of great potential interest to mutation testing

    Stability of multi-electron bubbles in liquid helium

    Full text link
    The stability of multi-electron bubbles in liquid helium is investigated theoretically. We find that multi-electron bubbles are unstable against fission whenever the pressure is positive. It is shown that for moving bubbles the Bernoulli effect can result in a range of pressures over which the bubbles are stable.Comment: 7 pages, 5 figure

    Half-Quantum Vortices in Thin Film of Superfluid 3^3He

    Full text link
    Stability of a half-quantum vortex (HQV) in superfluid 3^3He has been discussed recently by Kawakami, Tsutsumi and Machida in Phys. Rev. B {\bf 79}, 092506 (2009). We further extend this work here and consider the A2_2 phase of superfluid 3^3He confined in thin slab geometry and analyze the HQV realized in this setting. Solutions of HQV and singly quantized singular vortex are evaluated numerically by solving the Ginzburg-Landau (GL) equation and respective first critical angular velocities are obtained by employing these solutions. We show that the HQV in the A2_2 phase is stable near the boundary between the A2_2 and A1_1 phases. It is found that temperature and magnetic field must be fixed first in the stable region and subsequently the angular velocity of the system should be increased from zero to a sufficiently large value to create a HQV with sufficiently large probability. A HQV does not form if the system starts with a fixed angular velocity and subsequently the temperature is lowered down to the A2_2 phase. It is estimated that the external magnetic field with strength on the order of 1 T is required to have a sufficiently large domain in the temperature-magnetic field phase diagram to have a stable HQV.Comment: 5 pages, 5 figure
    corecore