60 research outputs found
Home-Office
Design and technology consultancy Automated Architecture (AUAR, pronounced ‘our’) builds their temporary Home-Office using robotically fabricated, reconfigurable timber building blocks. While looking for new office space, AUAR designed and built a temporary installation at The Building Centre in London, which acts as home, office and co-working space. The installation is based on ‘ALIS’ (Automated Living System), AUAR’s automated construction system for housing. ALIS uses robotically prefabricated plywood building blocks, with reversible connections that allow for quick reconfiguration and adaptation of the system over time. The installation is an active laboratory for AUAR to test the use of the ALIS system for different applications as well as acts as a live prototype for ongoing projects. The ALIS building blocks construct all elements of the Home-Office from private workspaces, to a large meeting table, load-bearing walls, floors slabs and a lounge corner with cushions. The space is designed as a chunk or volumetric section of a building that can accommodate both housing, work space and public functions constructed using only one repeating, pixel-like building block. The building blocks are lightweight and can be quickly assembled without the need for specialised toolv, cranes or an extensively trained workforce. The blocks themselves were used also as scaffolding and supports during the assembly of the Home-Office. The whole installation fits in a single Luton van, allowing it to be easily and quickly transported to a new site after the AUAR residency at The Building Centre is completed. Up to 10 people can work and relax in the space at the same time, while visitors can join in and reserve a workspace using an online application. Potential users can spin around a 3D model and click on a timber building block to book it for a given amount of time. A number of blocks are reserved for AUAR employees, who use them as fixed workspaces. The workspaces are arranged around the central lounge corner, with every workspace creating a private, semi-enclosed setting where users can focus on their work without being distracted by visitors to the installation. ALIS is based on a single, repeating building block, which can be cut by a CNC machine and robotically assembled by two industrial robots. Once prefabricated, the building blocks can be assembled into a variety of home typologies, from single family houses to backyard extensions and complete multi-story housing units, which can all be reconfigured and adapted over time. A set of algorithms was produced to generate and evaluate different building assemblies. Credits: Design and fabrication: Automated Architecture Ltd (AUAR) Design Team: Gilles Retsin, Manuel Jiménez GarcÃa, Vicente Soler, Mollie Claypool, Kevin Saey, Joana Correia Fabrication Team: Kevin Saey, Danae Parisi, Clara Jaschke, David Doria, Kim Van Poeteren, Mollie Claypool, Gilles Retsin, Manuel Jiménez GarcÃa Photography: Studio NAARO Drawings: AUA
Physiological Correlates of Endurance Time Variability during Constant-Workrate Cycling Exercise in Patients with COPD
RATIONALE: The endurance time (T(end)) during constant-workrate cycling exercise (CET) is highly variable in COPD. We investigated pulmonary and physiological variables that may contribute to these variations in T(end). METHODS: Ninety-two patients with COPD completed a CET performed at 80% of peak workrate capacity (W(peak)). Patients were divided into tertiles of T(end) [Group 1: <4 min; Group 2: 4-6 min; Group 3: >6 min]. Disease severity (FEV(1)), aerobic fitness (W(peak), peak oxygen consumption [VO2(peak)], ventilatory threshold [VO2(VT)]), quadriceps strength (MVC), symptom scores at the end of CET and exercise intensity during CET (heart rate at the end of CET to heart rate at peak incremental exercise ratio [HR(CET)/HR(peak)]) were analyzed as potential variables influencing T(end). RESULTS: W(peak), VO2(peak), VO2(VT), MVC, leg fatigue at end of CET, and HR(CET)/HR(peak) were lower in group 1 than in group 2 or 3 (p≤0.05). VO2(VT) and leg fatigue at end of CET independently predicted T(end) in multiple regression analysis (r = 0.50, p = 0.001). CONCLUSION: T(end) was independently related to the aerobic fitness and to tolerance to leg fatigue at the end of exercise. A large fraction of the variability in T(end) was not explained by the physiological parameters assessed in the present study. Individualization of exercise intensity during CET should help in reducing variations in T(end) among patients with COPD
Elevated urinary excretion of free pyridinoline in Friesian horses suggests a breed-specific increase in collagen degradation
Background: Friesian horses are known for their high inbreeding rate resulting in several genetic diseases such as hydrocephaly and dwarfism. This last decade, several studies focused on two other presumed hereditary traits in Friesian horses: megaoesophagus and aortic rupture. The pathogenesis of these diseases remains obscure but an important role of collagen has been hypothesized. The purpose of this study was to examine possible breed-related differences in collagen catabolism. Urinary specimens from Friesian (n = 17, median age 10 years old) and Warmblood horses (n = 17, median age 10 years old) were assessed for mature collagen cross-links, i.e. pyridinoline (PYD) (=hydroxylysylpyridinoline/HP) and deoxypyridinoline (DPD) (lysylpyridinoline /LP). Solid-phase extraction was performed, followed by reversed-phase ion-paired liquid chromatography prior to tandem mass spectrometry (MS/MS) detection. Results: Mean urinary concentrations of free PYD, expressed as fPYD/creatinine ratio, were significantly higher in Friesian horses compared to Warmblood horses (28.5 ± 5.2 versus 22.2 ± 9.6 nmol/mmol, p = 0.02) while mean fDPD/creatinine ratios were similar in both horse breeds (3.0 ± 0.7 versus 4.6 ± 3.7 nmol/mmol, p = 0.09). Conclusions: Since DPD is considered a specific bone degradation marker and PYD is more widely distributed in connective tissues, the significant elevation in the mean PYD/DPD ratio in Friesian versus Warmblood horses (9.6 ± 1.6 versus 5.7 ± 1.8, p < 0.0001) suggests a soft tissue origin for the increased fPYD levels. Considering that a previous study found no differences in total collagen content between Friesian and Warmblood horses for tendon and aortic tissue, this indicates a higher rate of collagen degradation. The latter might, at least in part, explain the predisposition of Friesians to connective tissue disorders
Assessment of Daily Life Physical Activities in Pulmonary Arterial Hypertension
Background: In pulmonary arterial hypertension (PAH), the six-minute walk test (6MWT) is believed to be representative of patient’s daily life physical activities (DLPA). Whether DLPA are decreased in PAH and whether the 6MWT is representative of patient’s DL PA remain unknown. Methods: 15 patients with idiopathic PAH (IPAH) and 10 patients with PAH associated with limited systemic sclerosis (PAH-SSc) were matched with 15 healthy control subjects and 10 patients with limited systemic sclerosis without PAH. Each subject completed a 6MWT. The mean number of daily steps and the mean energy expenditure and duration of physical activities.3 METs were assessed with a physical activity monitor for seven consecutive days and used as markers of DLPA. Results: The mean number of daily steps and the mean daily energy expenditure and duration of physical activities.3 METs were all reduced in PAH patients compared to their controls (all p,0.05). The mean number of daily steps correlated with the 6MWT distance for both IPAH and PAH-SSc patients (r = 0.76, p,0.01 and r = 0.85, p,0.01), respectively. Conclusion: DLPA are decreased in PAH and correlate with the 6MWT distance. Functional exercise capacity may thus be a useful surrogate of DL PA in PAH
Characterization of Granulations of Calcium and Apatite in Serum as Pleomorphic Mineralo-Protein Complexes and as Precursors of Putative Nanobacteria
Calcium and apatite granulations are demonstrated here to form in both human and
fetal bovine serum in response to the simple addition of either calcium or
phosphate, or a combination of both. These granulations are shown to represent
precipitating complexes of protein and hydroxyapatite (HAP) that display marked
pleomorphism, appearing as round, laminated particles, spindles, and films.
These same complexes can be found in normal untreated serum, albeit at much
lower amounts, and appear to result from the progressive binding of serum
proteins with apatite until reaching saturation, upon which the mineralo-protein
complexes precipitate. Chemically and morphologically, these complexes are
virtually identical to the so-called nanobacteria (NB) implicated in numerous
diseases and considered unusual for their small size, pleomorphism, and the
presence of HAP. Like NB, serum granulations can seed particles upon transfer to
serum-free medium, and their main protein constituents include albumin,
complement components 3 and 4A, fetuin-A, and apolipoproteins A1 and B100, as
well as other calcium and apatite binding proteins found in the serum. However,
these serum mineralo-protein complexes are formed from the direct chemical
binding of inorganic and organic phases, bypassing the need for any biological
processes, including the long cultivation in cell culture conditions deemed
necessary for the demonstration of NB. Thus, these serum granulations may result
from physiologically inherent processes that become amplified with calcium
phosphate loading or when subjected to culturing in medium. They may be viewed
as simple mineralo-protein complexes formed from the deployment of
calcification-inhibitory pathways used by the body to cope with excess calcium
phosphate so as to prevent unwarranted calcification. Rather than representing
novel pathophysiological mechanisms or exotic lifeforms, these results indicate
that the entities described earlier as NB most likely originate from calcium and
apatite binding factors in the serum, presumably calcification inhibitors, that
upon saturation, form seeds for HAP deposition and growth. These calcium
granulations are similar to those found in organisms throughout nature and may
represent the products of more general calcium regulation pathways involved in
the control of calcium storage, retrieval, tissue deposition, and disposal
The recent European isolate (08P178) of equine arteritis virus causes inflammation but not arteritis in experimentally infected ponies
In the last two decades, outbreaks of equine viral arteritis (EVA) have been reported in Europe, but little is known about these European isolates of equine arteritis virus (EAV). EAV European strain (08P178, EU-1 clade) isolated from one of these recent outbreaks is able to cause clinical signs on experimental infection. The aim of the present study was to investigate the microscopical lesions induced by this isolate after experimental infection of ponies. Animals were killed at 3, 7, 14 and 28 days post infection (dpi). At 3 dpi, lesions were essentially restricted to the respiratory tract and intestines and were characterized by mild multifocal epithelial degeneration and associated mononuclear cell infiltration. Lesions were more severe at 7 dpi and by 14 dpi, respiratory lesions were even more severe and lymphoplasmacytic infiltrates extended to other organs. At 28 dpi, lesions were still present in the viscera. In all specimens the most prominent histological change was intraepithelial, subepithelial and perivascular lymphoplasmacytic infiltration, ranging from mild and multifocal to extensive and diffuse. No signs of arterial damage such as infarcts, haemorrhages or necrosis were found. In conclusion, infection of na\uefve animals with the European 08P178 strain of EAV is associated with inflammation, but not arteriti
- …