270 research outputs found

    Analysis For Monitoring the Earth Science Afternoon Constellation

    Get PDF
    The Earth Science Afternoon Constellation consists of Aqua, Aura, PARASOL, CALIPSO, Cloudsat, and the Orbiting Carbon Observatory (OCO). The coordination of flight dynamics activities between these missions is critical to the safety and success of the Afternoon Constellation. This coordination is based on two main concepts, the control box and the zone-of-exclusion. This paper describes how these two concepts are implemented in the Constellation Coordination System (CCS). The CCS is a collection of tools that enables the collection and distribution of flight dynamics products among the missions, allows cross-mission analyses to be performed through a web-based interface, performs automated analyses to monitor the overall constellation, and notifies the missions of changes in the status of the other missions

    Impact of human bladder cancer cell architecture on autologous T-lymphocyte activation

    Get PDF
    To investigate the influence of tumor cell architecture on T-cell activation, we used an autologous human model based on 2 bladder tumor cell lines as targets for cytotoxic tumor-infiltrating lymphocytes (TILs). These tumor cell lines were grown in vitro as either standard 2-dimensional (2D) monolayers or 3-dimensional (3D) spheroids. T-cell activation was determined by measuring the production of three major cytokines (tumor necrosis factor, granulocyte/macrophage colony-stimulating factor and interferon-gamma), known to be secreted by most activated TILs. Changes in the architecture of target cells from 2D to 3D induced a dramatic decrease in their capacity for stimulating TILs. Interestingly, neither TIL infiltration nor MHC class I, B7.1 costimulatory or lymphocyte function-associated factor-3 adhesion molecule downregulation played a major role in this decrease. These findings demonstrate that tumor architecture has a major impact on T-cell activation and might be implicated in the escape of tumor cells from the immune system

    Tumor-associated antigen human chorionic gonadotropin beta contains numerous antigenic determinants recognized by in vitro-induced CD8+ and CD4+ T lymphocytes.

    Get PDF
    The beta subunit of human chorionic gonadotropin (hCG beta) is markedly overexpressed by neoplastic cells of differing histological origin including those present in colon, breast, prostate and bladder tumors. We have previously shown that some patients with hCG beta-producing urothelial tumors have circulating T cells that proliferate in response to hCG beta. To make a comprehensive study of hCG beta as a potential target for cancer immunotherapy, we investigated whether hCG beta peptides could induce CD4+ or CD8+ T-cell responses in vitro. By stimulating peripheral blood mononuclear cells (PBMCs) from three donors with mixtures of overlapping 16-mer synthetic peptides analogous to portions of either the hCG beta 20-71 or the hCG beta 102-129 region, we established six CD4+ T-cell lines that proliferated specifically in response to five distinct determinants located within these two hCG beta regions. Three antigenic determinants (hCG beta 52-67, 106-121 and 114-125) were presented by HLA-DR molecules, while the two other antigenic determinants (hCG beta 48-63 and 56-67) were presented by HLA-DQ molecules. Interestingly, one T-cell line specific for peptide hCG beta 106-121 recognized hCG beta peptides comprising, at position 117, either an alanine or an aspartic acid residue, with the latter residue being present within the protein expressed by some tumor cells. In addition, three other hCG beta-derived peptides that exhibited HLA-A*0201 binding ability were able to stimulate CD8+ cytotoxic T cells from two HLA-A*0201 donors. These three immunogenic peptides corresponded to regions hCG beta 40-48, hCG beta 44-52 and hCG beta 75-84. Our results indicate that the tumor-associated antigen hCG beta possesses numerous antigenic determinants liable to stimulate CD4+ and CD8+ T lymphocytes, and might thus be an effective target antigen for the immunotherapy of hCG beta-producing tumors

    Gene expression profiles of bladder cancers: evidence for a striking effect of in vitro cell models on gene patterns.

    Get PDF
    In order to assess the effect of in vitro models on the expression of key genes known to be implicated in the development or progression of cancer, we quantified by real-time quantitative PCR the expression of 28 key genes in three bladder cancer tissue specimens and in their derived cell lines, studied either as one-dimensional single cell suspensions, two-dimensional monolayers or three-dimensional spheroids. Global analysis of gene expression profiles showed that in vitro models had a dramatic impact upon gene expression. Remarkably, quantitative differences in gene expression of 2-63-fold were observed in 24 out of 28 genes among the cell models. In addition, we observed that the in vitro model which most closely mimicked in vivo mRNA phenotype varied with both the gene and the patient. These results provide evidence that mRNA expression databases based on cancer cell lines, which are studied to provide a rationale for selection of therapy on the basis of molecular characteristics of a patient\u27s tumour, must be carefully interpreted

    DNA microarray profiling of genes differentially regulated by the histone deacetylase inhibitors vorinostat and LBH589 in colon cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the significant progress made in colon cancer chemotherapy, advanced disease remains largely incurable and novel efficacious chemotherapies are urgently needed. Histone deacetylase inhibitors (HDACi) represent a novel class of agents which have demonstrated promising preclinical activity and are undergoing clinical evaluation in colon cancer. The goal of this study was to identify genes in colon cancer cells that are differentially regulated by two clinically advanced hydroxamic acid HDACi, vorinostat and LBH589 to provide rationale for novel drug combination partners and identify a core set of HDACi-regulated genes.</p> <p>Methods</p> <p>HCT116 and HT29 colon cancer cells were treated with LBH589 or vorinostat and growth inhibition, acetylation status and apoptosis were analyzed in response to treatment using MTS, Western blotting and flow cytometric analyses. In addition, gene expression was analyzed using the Illumina Human-6 V2 BeadChip array and Ingenuity<sup>® </sup>Pathway Analysis.</p> <p>Results</p> <p>Treatment with either vorinostat or LBH589 rapidly induced histone acetylation, cell cycle arrest and inhibited the growth of both HCT116 and HT29 cells. Bioinformatic analysis of the microarray profiling revealed significant similarity in the genes altered in expression following treatment with the two HDACi tested within each cell line. However, analysis of genes that were altered in expression in the HCT116 and HT29 cells revealed cell-line-specific responses to HDACi treatment. In addition a core cassette of 11 genes modulated by both vorinostat and LBH589 were identified in both colon cancer cell lines analyzed.</p> <p>Conclusion</p> <p>This study identified HDACi-induced alterations in critical genes involved in nucleotide metabolism, angiogenesis, mitosis and cell survival which may represent potential intervention points for novel therapeutic combinations in colon cancer. This information will assist in the identification of novel pathways and targets that are modulated by HDACi, providing much-needed information on HDACi mechanism of action and providing rationale for novel drug combination partners. We identified a core signature of 11 genes which were modulated by both vorinostat and LBH589 in a similar manner in both cell lines. These core genes will assist in the development and validation of a common gene set which may represent a molecular signature of HDAC inhibition in colon cancer.</p

    Histone deacetylase inhibitor, butyrate, attenuates lipopolysaccharide-induced acute lung injury in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Histone deacetylase (HDAC) inhibitors, developed as promising anti-tumor drugs, exhibit their anti-inflammatory properties due to their effects on reduction of inflammatory cytokines.</p> <p>Objective</p> <p>To investigate the protective effect of butyrate, a HDAC inhibitor, on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice.</p> <p>Methods</p> <p>ALI was induced in Balb/c mice by intratracheally instillation of LPS (1 mg/kg). Before 1 hour of LPS administration, the mice received butyrate (10 mg/kg) orally. The animals in each group were sacrificed at different time point after LPS administration. Pulmonary histological changes were evaluated by hematoxylin-eosin stain and lung wet/dry weight ratios were observed. Concentrations of interleukin (IL)-1β and tumor necrosis factor (TNF)-α in bronchoalveolar lavage fluid (BALF) and concentrations of nitric oxide (NO) and myeloperoxidase (MPO) activity in lung tissue homogenates were measured by enzyme-linked immunosorbent assay (ELISA). Expression of nuclear factor (NF)-κB p65 in cytoplasm and nucleus was determined by Western blot analysis respectively.</p> <p>Results</p> <p>Pretreatment with butyrate led to significant attenuation of LPS induced evident lung histopathological changes, alveolar hemorrhage, and neutrophils infiltration with evidence of reduced MPO activity. The lung wet/dry weight ratios, as an index of lung edema, were reduced by butyrate administration. Butyrate also repressed the production of TNF-α, IL-1β and NO. Furthermore, the expression of NF-κB p65 in nucleus was markedly suppressed by butyrate pretreatment.</p> <p>Conclusions</p> <p>Butyrate had a protective effect on LPS-induced ALI, which may be related to its effect on suppression of inflammatory cytokines production and NF-κB activation.</p

    Trichostatin A Selectively Suppresses the Cold-Induced Transcription of the ZmDREB1 Gene in Maize

    Get PDF
    Post-translational modifications of histone proteins play a crucial role in responding to environmental stresses. Histone deacetylases (HDACs) catalyze the removal of an acetyl group from histones and are generally believed to be a transcriptional repressor. In this paper, we report that cold treatment highly induces the up-regulation of HDACs, leading to global deacetylation of histones H3 and H4. Treatment of maize with the HDAC inhibitor trichostatin A (TSA) under cold stress conditions strongly inhibits induction of the maize cold-responsive genes ZmDREB1 and ZmCOR413. However, up-regulation of the ZmICE1 gene in response to cold stress is less affected. The expression of drought and salt induced genes, ZmDBF1 and rab17, is almost unaffected by TSA treatment. Thus, these observations show that HDACs may selectively activate transcription. The time course of TSA effects on the expression of ZmDREB1 and ZmCOR413 genes indicates that HDACs appear to directly activate the ZmDREB1 gene, which in turn modulates ZmCOR413 expression. After cold treatment, histone hyperacetylation and DNA demethylation occurs in the ICE1 binding region, accompanied by an increase in accessibility to micrococcal nuclease (MNase). The two regions adjacent to the ICE1 binding site remain hypoacetylated and methylated. However, during cold acclimation, TSA treatment increases the acetylation status and accessibility of MNase and decreases DNA methylation at these two regions. However, TSA treatment does not affect histone hyperacetylation and DNA methylation levels at the ICE1 binding regions of the ZmDREB1 gene. Altogether, our findings indicate that HDACs positively regulate the expression of the cold-induced ZmDREB1 gene through histone modification and chromatin conformational changes and that this activation is both gene and site selective

    Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy

    Get PDF
    High activity of histone deacetylases (HDACs) causes epigenetic alterations associated with malignant cell behaviour. Consequently, HDAC inhibitors have entered late-phase clinical trials as new antineoplastic drugs. However, little is known about expression and function of specific HDAC isoforms in human tumours including prostate cancer. We investigated the expression of class I HDACs in 192 prostate carcinomas by immunohistochemistry and correlated our findings to clinicopathological parameters including follow-up data. Class I HDAC isoforms were strongly expressed in the majority of the cases (HDAC1: 69.8%, HDAC2: 74%, HDAC3: 94.8%). High rates of HDAC1 and HDAC2 expression were significantly associated with tumour dedifferentiation. Strong expression of all HDACs was accompanied by enhanced tumour cell proliferation. In addition, HDAC2 was an independent prognostic marker in our prostate cancer cohort. In conclusion, we showed that the known effects of HDACs on differentiation and proliferation of cancer cells observed in vitro can also be confirmed in vivo. The class I HDAC isoforms 1, 2 and 3 are differentially expressed in prostate cancer, which might be important for upcoming studies on HDAC inhibitors in this tumour entity. Also, the highly significant prognostic value of HDAC2 clearly deserves further study
    corecore