60 research outputs found

    Stress transmission in wet granular materials

    Full text link
    We analyze stress transmission in wet granular media in the pendular state by means of three-dimensional molecular dynamics simulations. We show that the tensile action of capillary bonds induces a self-stressed particle network organized in two percolating "phases" of positive and negative particle pressures. Various statistical descriptors of the microstructure and bond force network are used to characterize this partition. Two basic properties emerge: 1) The highest particle pressure is located in the bulk of each phase; 2) The lowest pressure level occurs at the interface between the two phases, involving also the largest connectivity of the particles via tensile and compressive bonds. When a confining pressure is applied, the number of tensile bonds falls off and the negative phase breaks into aggregates and isolated sites

    Short-time dynamics of a packing of polyhedral grains under horizontal vibrations

    Full text link
    We analyze the dynamics of a 3D granular packing composed of particles of irregular polyhedral shape confined inside a rectangular box with a retaining wall sub jected to horizontal harmonic forcing. The simulations are performed by means of the contact dynamics method for a broad set of loading parameters. We explore the vibrational dynamics of the packing, the evolution of solid fraction and the scaling of dy- namics with the loading parameters. We show that the motion of the retaining wall is strongly anharmonic as a result of jamming and grain rearrangements. It is found that the mean particle displacement scales with inverse square of frequency, the inverse of the force amplitude and the square of gravity. The short- time compaction rate grows in proportion to frequency up to a characteristic frequency, corresponding to collective particle rearrangements between equilibrium states, and then it declines in inverse proportion to frequency

    Particle shape dependence in 2D granular media

    Get PDF
    Particle shape is a key to the space-filling and strength properties of granular matter. We consider a shape parameter η\eta describing the degree of distortion from a perfectly spherical shape. Encompassing most specific shape characteristics such as elongation, angularity and nonconvexity, η\eta is a low-order but generic parameter that we used in a numerical benchmark test for a systematic investigation of shape-dependence in sheared granular packings composed of particles of different shapes. We find that the shear strength is an increasing function of η\eta with nearly the same trend for all shapes, the differences appearing thus to be of second order compared to η\eta. We also observe a nontrivial behavior of packing fraction which, for all our simulated shapes, increases with η\eta from the random close packing fraction for disks, reaches a peak considerably higher than that for disks, and subsequently declines as η\eta is further increased. These findings suggest that a low-order description of particle shape accounts for the principal trends of packing fraction and shear strength. Hence, the effect of second-order shape parameters may be investigated by considering different shapes at the same level of η\eta.Comment: 5 pages, 8 figure

    A nonlinear Lagrangian particle model for grains assemblies including grain relative rotations

    Get PDF
    International audienceWe formulate a discrete Lagrangian model for a set of interacting grains, which is purely elastic. The considered degrees of freedom for each grain include placement of barycenter and rotation. Further, we limit the study to the case of planar systems. A representative grain radius is introduced to express the deformation energy to be associated to relative displacements and rotations of interacting grains. We distinguish inter‐grains elongation/compression energy from inter‐grains shear and rotations energies, and we consider an exact finite kinematics in which grain rotations are independent of grain displacements. The equilibrium configurations of the grain assembly are calculated by minimization of deformation energy for selected imposed displacements and rotations at the boundaries. Behaviours of grain assemblies arranged in regular patterns, without and with defects, and similar mechanical properties are simulated. The values of shear, rotation, and compression elastic moduli are varied to investigate the shapes and thicknesses of the layers where deformation energy, relative displacement, and rotations are concentrated. It is found that these concentration bands are close to the boundaries and in correspondence of grain voids. The obtained results question the possibility of introducing a first gradient continuum models for granular media and justify the development of both numerical and theoretical methods for including frictional, plasticity, and damage phenomena in the proposed model

    Kinematic fields in 2D granular media

    No full text
    National audienc

    Comparison of two numerical approaches (DEM and MPM) applied to unsteady flow

    No full text
    International audienc
    corecore