13 research outputs found

    Supernormal functional reserve of apical segments in elite soccer players: an ultrasound speckle tracking handgrip stress study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ultrasound speckle tracking from grey scale images allows the assessment of regional strain derived from 2D regardless of angle intonation, and it is highly reproducible. The study aimed to evaluate regional left ventricular functional reserve in elite soccer players.</p> <p>Methods</p> <p>50 subjects (25 elite athletes and 25 sedentary controls), aged 26 ± 3.5, were submitted to an echo exam, at rest and after the Hand Grip (HG) test. Both standard echo parameters and strain were evaluated.</p> <p>Results</p> <p>Ejection fraction was similar in athletes and controls both at rest (athletes 58 ± 2 vs controls 57 ± 4 p ns) and after HG (athletes 60 ± 2 vs controls 58 ± 3 p ns). Basal (septal and anterior) segments showed similar strain values in athletes and controls both at rest (athletes S% -19.9 ± 4.2; controls S% -18.8 ± 4.9 p = ns) and after HG (athletes S% -20.99 ± 2.8; controls S% -19.46 ± 4.4 p = ns). Medium-apical segments showed similar strain values at rest (athletes S% -17.31 ± 2.3; controls S% -20.00 ± 5.3 p = ns), but higher values in athletes after HG (athletes S% -24.47 ± 2.8; controls S% -20.47 ± 5.4 p < 0.05)</p> <p>Conclusion</p> <p>In athletes with physiological myocardial hypertrophy, a brief isometric effort produces enhancement of the strain in medium-apical left ventricular segments, suggesting the presence of a higher regional function reserve which can be elicited with an inotropic challenge and suitable methods of radial function quantification such as 2D-derived strain.</p

    Left and right ventricular longitudinal strain-volume/area relationships in elite athletes.

    Get PDF
    We propose a novel ultrasound approach with the primary aim of establishing the temporal relationship of structure and function in athletes of varying sporting demographics. 92 male athletes were studied [Group IA, (low static-low dynamic) (n = 20); Group IC, (low static-high dynamic) (n = 25); Group IIIA, (high static-low dynamic) (n = 21); Group IIIC, (high static-high dynamic) (n = 26)]. Conventional echocardiography of both the left ventricles (LV) and right ventricles (RV) was undertaken. An assessment of simultaneous longitudinal strain and LV volume/RV area was provided. Data was presented as derived strain for % end diastolic volume/area. Athletes in group IC and IIIC had larger LV end diastolic volumes compared to athletes in groups IA and IIIA (50 ± 6 and 54 ± 8 ml/(m(2))(1.5) versus 42 ± 7 and 43 ± 2 ml/(m(2))(1.5) respectively). Group IIIC also had significantly larger mean wall thickness (MWT) compared to all groups. Athletes from group IIIC required greater longitudinal strain for any given % volume which correlated to MWT (r = 0.4, p < 0.0001). Findings were similar in the RV with the exception that group IIIC athletes required lower strain for any given % area. There are physiological differences between athletes with the largest LV and RV in athletes from group IIIC. These athletes also have greater resting longitudinal contribution to volume change in the LV which, in part, is related to an increased wall thickness. A lower longitudinal contribution to area change in the RV is also apparent in these athletes

    Speckle Tracking Echocardiography for the Assessment of the Athlete's Heart: Is It Ready for Daily Practice?

    Get PDF
    PURPOSE OF REVIEW: To describe the use of speckle tracking echocardiography (STE) in the biventricular assessment of athletes' heart (AH). Can STE aid differential diagnosis during pre-participation cardiac screening (PCS) of athletes? RECENT FINDINGS: Data from recent patient, population and athlete studies suggest potential discriminatory value of STE, alongside standard echocardiographic measurements, in the early detection of clinically relevant systolic dysfunction. STE can also contribute to subsequent prognosis and risk stratification. Despite some heterogeneity in STE data in athletes, left ventricular global longitudinal strain (GLS) and right ventricular longitudinal strain (RV É›) indices can add to differential diagnostic protocols in PCS. STE should be used in addition to standard echocardiographic tools and be conducted by an experienced operator with significant knowledge of the AH. Other indices, including left ventricular circumferential strain and twist, may provide insight, but further research in clinical and athletic populations is warranted. This review also raises the potential role for STE measures performed during exercise as well as in serial follow-up as a method to improve diagnostic yield

    Left ventricular speckle tracking-derived cardiac strain and cardiac twist mechanics in athletes: a systematic review and meta-analysis of controlled studies

    Get PDF
    Background: The athlete’s heart is associated with physiological remodeling as a consequence of repetitive cardiac loading. The effect of exercise training on left ventricular (LV) cardiac strain and twist mechanics are equivocal, and no meta-analysis has been conducted to date. Objective: The objective of this systematic review and meta-analysis was to review the literature pertaining to the effect of different forms of athletic training on cardiac strain and twist mechanics and determine the influence of traditional and contemporary sporting classifications on cardiac strain and twist mechanics. Methods: We searched PubMed/MEDLINE, Web of Science, and ScienceDirect for controlled studies of aged-matched male participants aged 18–45 years that used two-dimensional (2D) speckle tracking with a defined athlete sporting discipline and a control group not engaged in training programs. Data were extracted independently by two reviewers. Random-effects meta-analyses, subgroup analyses, and meta-regressions were conducted. Results: Our review included 13 studies with 945 participants (controls n = 355; athletes n = 590). Meta-analyses showed no athlete–control differences in LV strain or twist mechanics. However, moderator analyses showed greater LV twist in high-static low-dynamic athletes (d = –0.76, 95% confidence interval [CI] –1.32 to –0.20; p < 0.01) than in controls. Peak untwisting velocity (PUV) was greater in high-static low-dynamic athletes (d = –0.43, 95% CI –0.84 to –0.03; p < 0.05) but less than controls in high-static high-dynamic athletes (d = 0.79, 95% CI 0.002–1.58; p = 0.05). Elite endurance athletes had significantly less twist and apical rotation than controls (d = 0.68, 95% CI 0.19–1.16, p < 0.01; d = 0.64, 95% CI 0.27–1.00, p = 0.001, respectively) but no differences in basal rotation. Meta-regressions showed LV mass index was positively associated with global longitudinal (b = 0.01, 95% CI 0.002–0.02; p < 0.05), whereas systolic blood pressure was negatively associated with PUV (b = –0.06, 95% CI –0.13 to –0.001; p = 0.05). Conclusion: Echocardiographic 2D speckle tracking can identify subtle physiological differences in adaptations to cardiac strain and twist mechanics between athletes and healthy controls. Differences in speckle tracking echocardiography-derived parameters can be identified using suitable sporting categorizations
    corecore