45 research outputs found

    Noncommutative marked surfaces

    No full text
    The aim of the paper is to attach a noncommutative cluster-like structure to each marked surface Σ\Sigma. This is a noncommutative algebra AΣ{\mathcal A}_\Sigma generated by "noncommutative geodesics" between marked points subject to certain triangle relations and noncommutative analogues of Ptolemy-Pl\"ucker relations. It turns out that the algebra AΣ{\mathcal A}_\Sigma exhibits a noncommutative Laurent Phenomenon with respect to any triangulation of Σ\Sigma, which confirms its "cluster nature". As a surprising byproduct, we obtain a new topological invariant of Σ\Sigma, which is a free or a 1-relator group easily computable in terms of any triangulation of Σ\Sigma. Another application is the proof of Laurentness and positivity of certain discrete noncommutative integrable systems.Comment: 49 pages, AmsLaTex, some typos are corrected and pictures updated, to appear in Advances in Mathematic

    Quasideterminants

    Get PDF
    The determinant is a main organizing tool in commutative linear algebra. In this review we present a theory of the quasideterminants defined for matrices over a division algebra. We believe that the notion of quasideterminants should be one of main organizing tools in noncommutative algebra giving them the same role determinants play in commutative algebra.Comment: amstex; final version; to appear in Advances in Mat

    Double Poisson brackets on free associative algebras

    Get PDF

    Cohomology of Lie superalgebras and of their generalizations

    Full text link
    The cohomology groups of Lie superalgebras and, more generally, of color Lie algebras, are introduced and investigated. The main emphasis is on the case where the module of coefficients is non-trivial. Two general propositions are proved, which help to calculate the cohomology groups. Several examples are included to show the peculiarities of the super case. For L = sl(1|2), the cohomology groups H^1(L,V) and H^2(L,V), with V a finite-dimensional simple graded L-module, are determined, and the result is used to show that H^2(L,U(L)) (with U(L) the enveloping algebra of L) is trivial. This implies that the superalgebra U(L) does not admit of any non-trivial formal deformations (in the sense of Gerstenhaber). Garland's theory of universal central extensions of Lie algebras is generalized to the case of color Lie algebras.Comment: 50 pages, Latex, no figures. In the revised version the proof of Lemma 5.1 is greatly simplified, some references are added, and a pertinent result on sl(m|1) is announced. To appear in the Journal of Mathematical Physic

    Manin matrices and Talalaev's formula

    Full text link
    We study special class of matrices with noncommutative entries and demonstrate their various applications in integrable systems theory. They appeared in Yu. Manin's works in 87-92 as linear homomorphisms between polynomial rings; more explicitly they read: 1) elements in the same column commute; 2) commutators of the cross terms are equal: [Mij,Mkl]=[Mkj,Mil][M_{ij}, M_{kl}]=[M_{kj}, M_{il}] (e.g. [M11,M22]=[M21,M12][M_{11}, M_{22}]=[M_{21}, M_{12}]). We claim that such matrices behave almost as well as matrices with commutative elements. Namely theorems of linear algebra (e.g., a natural definition of the determinant, the Cayley-Hamilton theorem, the Newton identities and so on and so forth) holds true for them. On the other hand, we remark that such matrices are somewhat ubiquitous in the theory of quantum integrability. For instance, Manin matrices (and their q-analogs) include matrices satisfying the Yang-Baxter relation "RTT=TTR" and the so--called Cartier-Foata matrices. Also, they enter Talalaev's hep-th/0404153 remarkable formulas: det(∂z−LGaudin(z))det(\partial_z-L_{Gaudin}(z)), det(1-e^{-\p}T_{Yangian}(z)) for the "quantum spectral curve", etc. We show that theorems of linear algebra, after being established for such matrices, have various applications to quantum integrable systems and Lie algebras, e.g in the construction of new generators in Z(U(gln^))Z(U(\hat{gl_n})) (and, in general, in the construction of quantum conservation laws), in the Knizhnik-Zamolodchikov equation, and in the problem of Wick ordering. We also discuss applications to the separation of variables problem, new Capelli identities and the Langlands correspondence.Comment: 40 pages, V2: exposition reorganized, some proofs added, misprints e.g. in Newton id-s fixed, normal ordering convention turned to standard one, refs. adde

    Fredholm determinants and pole-free solutions to the noncommutative Painleve' II equation

    Get PDF
    We extend the formalism of integrable operators a' la Its-Izergin-Korepin-Slavnov to matrix-valued convolution operators on a semi-infinite interval and to matrix integral operators with a kernel of the form E_1^T(x) E_2(y)/(x+y) thus proving that their resolvent operators can be expressed in terms of solutions of some specific Riemann-Hilbert problems. We also describe some applications, mainly to a noncommutative version of Painleve' II (recently introduced by Retakh and Rubtsov), a related noncommutative equation of Painleve' type. We construct a particular family of solutions of the noncommutative Painleve' II that are pole-free (for real values of the variables) and hence analogous to the Hastings-McLeod solution of (commutative) Painleve' II. Such a solution plays the same role as its commutative counterpart relative to the Tracy-Widom theorem, but for the computation of the Fredholm determinant of a matrix version of the Airy kernel.Comment: 46 pages, no figures (oddly

    Factorizations of Elements in Noncommutative Rings: A Survey

    Full text link
    We survey results on factorizations of non zero-divisors into atoms (irreducible elements) in noncommutative rings. The point of view in this survey is motivated by the commutative theory of non-unique factorizations. Topics covered include unique factorization up to order and similarity, 2-firs, and modular LCM domains, as well as UFRs and UFDs in the sense of Chatters and Jordan and generalizations thereof. We recall arithmetical invariants for the study of non-unique factorizations, and give transfer results for arithmetical invariants in matrix rings, rings of triangular matrices, and classical maximal orders as well as classical hereditary orders in central simple algebras over global fields.Comment: 50 pages, comments welcom

    Local BRST cohomology in (non-)Lagrangian field theory

    Full text link
    Some general theorems are established on the local BRST cohomology for not necessarily Lagrangian gauge theories. Particular attention is given to the BRST groups with direct physical interpretation. Among other things, the groups of rigid symmetries and conservation laws are shown to be still connected, though less tightly than in the Lagrangian theory. The connection is provided by the elements of another local BRST cohomology group whose elements are identified with Lagrange structures. This extends the cohomological formulation of the Noether theorem beyond the scope of Lagrangian dynamics. We show that each integrable Lagrange structure gives rise to a Lie bracket in the space of conservation laws, which generalizes the Dickey bracket of conserved currents known in Lagrangian field theory. We study the issues of existence and uniqueness of the local BRST complex associated with a given set of field equations endowed with a compatible Lagrange structure. Contrary to the usual BV formalism, such a complex does not always exist for non-Lagrangian dynamics, and when exists it is by no means unique. The ambiguity and obstructions are controlled by certain cohomology classes, which are all explicitly identified.Comment: 37 pages, 1 figure, minor corrections, references adde

    Lie algebras and Lie groups over noncommutative rings

    Get PDF
    The aim of this paper is to introduce and study Lie algebras and Lie groups over noncommutative rings. For any Lie algebra ≫\gg sitting inside an associative algebra AA and any associative algebra \FF we introduce and study the algebra (\gg,A)(\FF), which is the Lie subalgebra of \FF \otimes A generated by \FF \otimes \gg. In many examples AA is the universal enveloping algebra of ≫\gg. Our description of the algebra (\gg,A)(\FF) has a striking resemblance to the commutator expansions of \FF used by M. Kapranov in his approach to noncommutative geometry. To each algebra (\gg, A)(\FF) we associate a ``noncommutative algebraic'' group which naturally acts on (\gg,A)(\FF) by conjugations and conclude the paper with some examples of such groups.Comment: Introduction is improved and some typos corrected. To appear in "Advances
    corecore