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Abstract
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present a theory of the quasideterminants defined for matrices over a division ring.
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0. Introduction

The ubiquitous notion of a determinant has a long history, both visible and
invisible. The determinant has been a main organizing tool in commutative linear
algebra and we cannot accept the point of view of a modern textbook [FIS] that
“determinants ... are of much less importance than they once were”.

Attempts to define a determinant for matrices with noncommutative entries
started more than 150 years ago and include several great names. For many years the
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most famous examples of matrices of noncommutative objects were quaternionic
matrices and block matrices. It is not surprising that the first noncommutative
determinants or similar notions were defined for such structures.

Cayley [C] was the first to define, in 1845, the determinant of a matrix with

noncommutative entries. He mentioned that for a quaternionic matrix 4 = (Zl: Zl;)

the expressions ajjax — ajpay; and ajjax — ayap, are different and suggested
choosing one of them as the determinant of the matrix 4. The analog of this
construction for 3 x 3-matrices was also proposed in [C] and later developed in [J].
This “naive” approach is now known to work for quantum determinants and some
other cases. Different forms of quaternionic determinants were considered later by
Study [St], Moore [Mo] and Dyson [Dy].

There were no direct “determinantal’ attacks on block matrices (excluding evident
cases) but important insights were given by Frobenius [Fr] and Schur [Schur].

A theory of determinants of matrices with general noncommutative entries
was in fact originated by Wedderburn in 1913. In [W] he constructed a theory
of noncommutative continued fractions or, in modern terms, ‘“‘determinants’ of
noncommutative Jacobi matrices.

In 1926-1928 Heyting [H] and Richardson [Ri,Ril] suggested analogs of a
determinant for matrices over division rings. Heyting is known as a founder of
intuitionist logic and Richardson as a creator of the Littlewood—Richardson rule.
Heyting tried to construct a noncommutative projective geometry. As a computa-
tional tool, he introduced the ‘“‘designant” of a noncommutative matrix. The
designant of a 2 x 2-matrix 4 = (a;) is defined as a;; — a12a521a21. The designant of
an n X n-matrix is defined then by a complicated inductive procedure. The inductive
procedures used by Richardson were even more complicated. It is important to
mention that determinants of Heyting and Richardson in general are rational
functions (and not polynomials!) in matrix entries.

The idea to have nonpolynomial determinants was strongly criticized by Ore [O].
In [O] he defined a polynomial determinant for matrices over an important class of
noncommutative rings (now known as Ore rings).

The most famous and widely used noncommutative determinant is the Dieudonne
determinant. It was defined for matrices over a division ring R by Dieudonne in 1943
[D]. His idea was to consider determinants with values in R*/[R*, R*] where R* is the
monoid of invertible elements in R. The properties of Dieudonne determinants are
close to those of commutative ones, but, evidently, Dieudonne determinants cannot
be used for solving systems of linear equations.

An interesting generalization of commutative determinants belongs to Berezin
[B,Le]. He defined determinants for matrices over so-called super-commutative
algebras. In particular, Berezin also understood that it is impossible to avoid rational
functions in matrix entries in his definition.

Other famous examples of noncommutative determinants developed for different
special cases are: quantum determinants [KS,Ma], Capelli determinants [We],
determinants introduced by Cartier—Foata [CF,F] and Birman—Williams [BW], etc.
As we explain later (using another universal notion, that of quasideterminants) these
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determinants and the determinants of Dieudonne, Study, Moore, etc., are related to
each other much more than one would expect.

The notion of quasideterminants for matrices over a noncommutative division ring
was introduced in [GR,GR1,GR2]. Quasideterminants are defined in the “most non-
commutative case”, namely, for matrices over free division rings. We believe that qua-
sideterminants should be one of main organizing tools in noncommutative algebra
giving them the same role determinants play in commutative algebra. The quasi-
determinant is not an analog of the commutative determinant but rather of a ratio of the
determinant of an n x n-matrix to the determinant of an (n — 1) x (n — 1)-submatrix.

The main property of quasideterminants is a “‘heredity principle”: let 4 be a
square matrix over a division ring and (4;) a block decomposition of 4 (into
submatrices of A4). Consider the A4;’s as elements of a matrix X. Then the
quasideterminant of the matrix X will be a matrix B, and (under natural
assumptions) the quasideterminant of B is equal to a suitable quasideterminant of
A. Since determinants of block matrices are not defined, there is no analog of this
principle for ordinary (commutative) determinants.

Quasideterminants have been effective in many areas including noncommutative
symmetric functions [GKLLRT], noncommutative integrable systems [EGR,EGR1,
RS], quantum algebras and Yangians [GR,GR1,GR2,KL,Mol,Moll,MolR], and so
on [P,RRV,RSh,Sch]. Quasideterminants and related quasi-Pliicker coordinates
are also important in various approaches to noncommutative algebraic geometry
(e.g., [K,KR,SvB]).

Many areas of noncommutative mathematics (Ore rings, rings of differential
operators, theory of factors, “quantum mathematics™, Clifford algebras, etc.) were
developed separately from each other. Our approach shows an advantage of working
with totally noncommutative variables (over free rings and division rings). It leads us
to a large variety of results, and their specialization to different noncommutative
areas implies known theorems with additional information.

The price one pays for this is a huge number of inversions in rational
noncommutative expressions. The minimal number of successive inversions required
to express an element is called the height of this element. This invariant (inversion
height) reflects the “degree of noncommutativity” and it is of a great interest by itself.

Our experience shows that in dealing with noncommutative objects one should not
imitate the classical commutative mathematics, but follow “the way it is” starting
with basics. In this paper we concentrate on two problems: noncommutative Pliicker
coordinates (as a background of a noncommutative geometry) and the noncommu-
tative Bezout and Viéte theorems (as a background of noncommutative algebra). We
apply the obtained results to the theory of noncommutative symmetric functions
started in [GKLLRT].

We have already said that the universal notion of a determinant has a long history,
both visible and invisible. The visible history of determinants comes from the fact
that they are constructed from another class of universal objects: matrices.

The invisible history of determinants is related with the Heredity principle for
matrices: matrices can be viewed as matrices with matrix entries (block matrices) and
some matrix properties come from the corresponding properties of block matrices.
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In some cases, when the matrix entries of the block matrix commute, the determinant
of a matrix can be computed in terms of the determinants of its blocks, but in general
it is not possible: the determinant of a matrix with matrix entries is not defined
because the entries do not commute. In other words, the determinant does not satisfy
the Heredity principle.

Quasideterminants are defined for matrices over division rings and satisfy the
Heredity Principle. Their definition can be specialized for matrices over a ring
(including noncommutative rings) and can be connected with different “famous”
determinants. This reflects another general principle: in many cases noncommutative
algebra can be made simpler and more natural than commutative algebra.

The survey describes the first 10 years of development of this very active area, and
we hope that future work will bring many new interesting results.

The paper is organized as follows. In Section 1 a definition of quasideterminants is
given and the main properties of quasideterminants (including the Heredity
principle) are described.

In Section 2 we discuss an important example: quasideterminants of quaternionic
matrices. These quasideterminants can be written as polynomials with real
coefficients in the matrix entries and their quaternionic conjugates.

As we already mentioned, mathematics knows a lot of different versions of
noncommutative determinants. In Section 3 we give a general definition of
determinants of noncommutative matrices (in general, there are many determinants
of a fixed matrix) and show how to obtain some well-known noncommutative
determinants as specializations of our definition.

In Section 4 we introduce noncommutative versions of Plicker and flag
coordinates for rectangular matrices over division rings.

In Section 5 we discuss two related classical problems for noncommutative
polynomials in one variable: how to factorize a polynomial into products of linear
polynomials and how to express the coefficients of a polynomial in terms of its roots.

This results obtained in Section 5 lead us to a theory of noncommutative
symmetric functions (Section 6) and to universal quadratic algebras associated with
so-called pseudo-roots of noncommutative polynomials and noncommutative
differential polynomials (Section 7).

In Section 8 we present another approach to the theory of noncommutative
determinants, traces, etc., and relate it to the results presented in Sections 3 and 5.

Some applications to noncommutative continued fractions, characteristic func-
tions of graphs, noncommutative orthogonal polynomials and integrable systems are
given in Section 9.

1. General theory and main identities

1.1. The division ring of rational functions in free variables

Throughout the paper we will work with rings of fractions of various
noncommutative rings. There are several ways to define rings of fractions in the
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noncommutative case. We will use the approach developed by Amitsur, Bergman
and P. M. Cohn (for a detailed exposition see, e.g., [Co]). The advantage of this
approach is that it is constructive; its disadvantage is that it does not look very
natural.

First, we define the free division ring generated by a finite set. Let X = {xy, ..., x;, }
be a finite set. Define F(X) as the free algebra generated by m + 2 elements
0,1,x1, ..., Xy, unary operations a+— — a, a~>a_', and binary operations + and x,
so that F(X) contains such elements as (x — x) ' and even 0~'. No commutativity,
associativity, distributivity, or other conditions are imposed, so, that, in particular,
elements (x; + x2) x x3 and x; X x3 + X, X x3 are distinct, and three elements

(=) (0—x)™, a1

are also distinct. Elements of F(X) are called formulas or rational expressions
over X.

Denote by P(X) the subset of F(X) consisting of formulas without division, i.e.,
without operation ( )"
Now let R be a Q-algebra. By a partial homomorphism of F(X) to R we mean a

pair (G, f8) consisting of a subset G F(X) and a map f : G— R such that

(i) 0,1€G and B(0) =0, B(1) = 1,
(i) if @y = —b, ap = b+ ¢, a3 = b x ¢ are elements in G then b,ceG and f(a;) =
—B(b), B(az) = B(b) + P(c), Blaz) = B(b)B(c).
(iii) Let he G and let f(b) be invertible in R. Then b~'e G and B(b~") = (B(b)) "

Let again R be a Q-algebra and o : X — R an arbitrary map. We say that a partial
homomorphism (G, §) of F(X) to R is an extension of a map « if, in addition to
(1)—(iii), the following condition is satisfied.

(iv) Fori=1,...,m we have x;€ G and f(x;) = a(x;).

Clearly, for an arbitrary o, conditions (i), (ii), (iv) determine a natural extension
(P(X),ap), and for any other extension (G, ) we have GO P(X), Blpy) = op.

For two extension (Gy,f,) and (G, f,) of o define their intersection (G, f) as
follows:

G is the set of all ae Gy G, such that §,(a) = f,(a),

B(a) = B,(a) = p,(a) for aed.

Clearly, (G, p) is again an extension of a. Therefore, the intersection of all extensions
of o is again an extension. We call it the canonical extension of « and denote by
(Gy, @), or simply 4.
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Since each o : X — R admits at least one extension (for example, (P(X),ap)), the
definition of the canonical extension makes sense.

If (Go,a@) is the canonical extension of o and aeGy we say that a can be
evaluated at a.

Let D be a division ring over Q. Denote by M (X, D) the set of all maps o : X - D.
Clearly, M (X, D) is isomorphic to D", where m = card X.

Definition 1.1.1. (i) The domain dom a of an element ae F(X) is subset of M (X, D)
consisting of the maps o : X — D such that o can be evaluated at a.

(i) An element ae F(X) is called nondegenerate if doma+#0, and degenerate
otherwise.

(iii) Two elements a;,a; € F(X) are called equivalent if they are both nondegene-
rate and d&(a;) = &(ay) for all xedom a; ndom a,.

For example, for x€ X, the elements x — xe F(X) is nondegenerate and equivalent
to 0 F(X) whereas (x — x) ' is degenerate. Another example: for xe X, the element
a;=(1—x)"+(1—x"""is equivalent to a, = 1.

Theorem 1.1.2 (Cohn [Co, Section 7.2]). (i) If a1,a,€ F(X) are both nondegenerate,
then dom; ndom a, #0.

(i1) Assume, in addition, that D is a division ring with the center Q. Then the
equivalence classes of elements in F(X) form a division ring, called Fp(X).

(ii1) If division rings D) and D, with center Q are infinite dimensional
over Q, then the projections F(X)— Fp, and F(X)— Fp, induce an isomorphism
Fp, ~Fp,.

Part (iii) of Theorem 1.1.2 allows us to identify the division rings Fp(X)
for all division rings D infinite-dimensional over @. We denote this division ring by
F(X) and called it the free division ring generated by X. For example, if X consists of
one element x, then F(X) = Q(x) is the field of rational functions over Q in one
variable.

Elements feF(X) are called (noncommutative) rational functions in variables
xe X, and any element aeF(X) in the equivalence class f is called a rational
expression of the function f.

Remark. Similar results hold if Q is replaced by an arbitrary field k of charac-
teristic 0 (for example, by C).

The next proposition shows that for an arbitrary Q-algebra R evaluations of a
map o : X - R on two equivalent elements coincide.

Proposition 1.1.3. Let R be a Q-algebra, o : X - R a map, and (Gy,d) the canonical
extension of o. If aj,aeF(X) are equivalent and both lie in Gy F(X), then
oZ(al) = OZ(Clz).
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Definition 1.1.4. Let o : X - R and let (G, d) be the canonical extension of «. We say
that o can be evaluated at /'€ F(X) if there exists ae F(X) in the equivalence class of
f such that ae Gy, and in this case we define the value of « at f by the formula

o f) = ala).

Proposition 1.1.3 shows that this definition makes sense.
Cohn has shown (see [Co, Section 7.2]) that the division ring F(X) can be
characterized by a universality property as follows.

Theorem 1.1.5. There exists a division ring F(X) over Q and a monomorphism of
algebras 0 : QX ) - F(X) with the following property.
If D is an arbitrary division ring and

¢:Q{X)-D,

a homomorphism, then there is a unique pair (R, ) consisting of a subring R< F(X)
containing 0(Q< X ) and a homomorphism

Y:R->D

such that @ =0 and if ae R and (a)#0, then a' e R.
The pair (F(X),0) is determined uniquely up to a unique isomorphism.

To conclude this subsection, we recall the definition of inversion height (see, for
example, [Re]).

Definition 1.1.6. (i) The inversion height of a formula aeF(X) is the maximal
number of nested inversions in a.

(ii) The inversion height of an element f'e F(X) is the smallest inversion height of a
formula in the equivalence class f.

Examples. (i) The inversion height of a polynomial in generators xe X equals
Zero.

(i) The inversion height of the ratio of two polynomials PO~! equals 0 if
P is right divisible by Q (i.e., there exists a polynomial R such that P = RQ), and
1 otherwise.

In the next two examples, let x, y, z be three different elements of X.

(iii) Consider the elements a;,a; e F(X) given by the formulas a; = (1 — x)™' +
(1—xYH"and e =x"'+x'zy ' —=x ) 'x'. Let f; and f» be the corre-
sponding elements in F(X). Then the inversion height of a; and a, equals 2. On the
other hand, in F(X) we have a; = 1 and a, = (x — yz)~'. Hence, the height of f;
equals 0 and the height of f, equals 1.

(iv) The height of the element feF(X) given by the formula (x —yw='z)™"'
equals 2.
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1.2. Definition of quasideterminants

Let I, J be two finite sets of the same cardinality » and X be the set of n”> elements
xjj, 1 <i,j<n. Denote by F(X) the free division ring generated by X (see 1.1). Let X’
be the n x n-matrix over F(X') with rows indexed by elements of 7, columns indexed
by elements of J, and the (7,/)th entry equal to x; € F(X).

Proposition 1.2.1. The matrix X is invertible over F(X).

Proof. The proof is by induction in #n. Let us assume, for simplicity, that I =J =
{1,...,n}.

For n =1, X = (x1) and the inverse matrix ¥ = X! is ¥ = (y;), where y;; =

(xll)il.

Let n>2. Represent X = (x;) as a 2x2 block matrix according to the
decompositions {1, ...,n} ={l,...,n— 1} u{n} of I and J,

Y (Xll XIZ)
Xo1 X
so that Xj;, X2, Xa1, X2 are matrices of order (n—1)x (n—1), (n—1) x 1,

Il x (n—1),and 1 x 1, respectively. Then one can directly verify that the matrix ¥
given in the same block decomposition

Y:(Yll le)
Yo Yx

Y = (Xu *X12X51X21)71,

by the formulas

Yio = — X' X12(Xan — X21X1711X12)71,
Yar = — X5 Xo1 (X1 — XlzX{lezl)fl,
Yoo = (Xn — Xo1 X' X12) ™,
is the inverse to X.
Let 7,J be asin 1.2.1 and let Y be the matrix inverse to X, as in Proposition 1.2.1.

Notice that each entry y; of Y is a nonzero element of the division ring F(&X). O

Definition 1.2.2 (Quasideterminant of a matrix with formal entries). For iel, jeJ
the (,/)th quasideterminant | X|; of X is the element of F(X) defined by the formula

-1
|X|g,‘ = (i)

where Y = X! = (y;), see Proposition 1.2.1.
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From the proof of Proposition 1.2.1, we obtain the following recurrence relations
for | X1,

First of all, if n =1, so that I = {i}, J = {j}, then [X|; = x;.

Next, let n>2 and let X7 be the (n— 1) x (n — 1)-matrix obtained from X by
deleting the ith row and the jth column. Then

S
|X|ij:xU'_ini’(|XU|j’i’) Xjj (121)
Here the sum is taken over i/ e I\{i}, /e \{/j}.

Remark. In part (ii) of Definition 1.2.1, X7 is the matrix with formal entries x;;
indexed by elements i/el\{i}, j/eJ\{/}, and (\X”|J-,i,)_l is the inverse of the
quasideterminant | X¥| 7y in the corresponding free division ring F/(X") = F(X), where

X = {X,‘/jf, l/EI\{l}a]/EJ\{]}}

Examples 1.2.3. (a) For the 2 X 2-matrix X = (x;), i,j=1,2, there are four
quasideterminants:

X[ = %11 — X2+ X3 - X2, X1y = 200 — X110 x5 - X,
X[y = x21 = X2+ X713 - 11, [ Xy = %00 — x01 - X7 - X,

(b) For the 3 x 3-matrix X = (x;), i,/ = 1,2, 3, there are 9 quasideterminants. One
of them is

X =11 — X120 — X23X33 %32) " x21 — X12(x32 — X33 - X33 %22) ' X3

—1 -1 —1 —1
— x13(23 — X20X5, X33) " X21 — X13(X33 — X320 - Xpp X23) X34

The action of the product of symmetric groups S, x S, on I x J, |I| = |J| = n,
induces the action of S, x S, on the set of variables {a;}, i€l, jeJ, and the
corresponding action on the free division ring F(X). We denote this latter action by
[ (o,0)f, 0,7€S,.

The following proposition shows that the definition of the quasideterminant is
compatible with this action.

Proposition 1.2.4. For (5,7)€S, x S, we have (o, 7)(|X|;) = | X150 -

In particular, the stabilizer subgroup of |X|; under the action of S, xS, is
isomorphic to S,_1 X S,_1.

Proposition 1.2.4 shows that in the definition of the quasideterminant, we do not
need to require / and J to be ordered or a bijective correspondence between / and J
to be given.
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We go now to the definition of quasideterminants over a ring R with unit. Let
A = (ay), iel, jeJ, be a matrix over R. Such a matrix determines the map o, :
X—R, X = {x;}, given by the formula a4 (x;) = aj.

Definition 1.2.5 (Quasideterminant of a matrix over a ring). Let iel, jeJ, and the
formal quasideterminant |X|;eF(X) can be evaluated at oy in the sense of

Definition 1.1.4. Then we say that the (i/)th quasideterminant |4|; of 4 exists and is
equal to o (|X];). Otherwise, we say that |4]; does not exist.

According to this definition, the quasideterminant |4|; of a matrix 4 over R is an
element of R.

According to Definition 1.2.2 and Proposition 1.2.4, the quasideterminant |A|;
can be computed as follows. Denote by rij the row submatrix of length n —1
obtained from ith row of 4 by deleting the element a;, and by c} the column
submatrix of height n — 1 obtained from jth column of 4 by deleting the element a;.

Proposition 1.2.6. Let |I|,|J|>1 and assume that the (n — 1) x (n — 1)-matrix AV is
invertible over R. Then

s
Al = az —r] (A7) ¢} (1.2.2)

i~ i

Remark. For a generic matrix 4, to find the quasideterminant |4|;, one should take
the formula to |X/|;, substitute x;+>ay;, and verify that all inversions exist in R.

However, in special cases (for example, when some of the entries of 4 equal zero),
one might need to replace the formula for the quasideterminant by an equivalent
formula and only then to substitute x;;+> ;. Here is an example.

Let

ajr  ap a3
A= ay an a3 |,

0 axn ax

where a; and a3, are invertible in R. The quasideterminant |4|,; cannot be defined
using formula (1.2.1) since the rational expression aja(axn — a21a3‘11a32)71a23 is not
defined. However, if we replace this expression in formula (1.2.1) by the equivalent
expression alzagzl as (a22a3‘21 as; — dyg )7]a23, the new formula is defined for the matrix
A and the corresponding rational function given the quasideterminant |A4]|,;.

Let us note also that the since the submatrix

A13 _ a ann
0 axp

is invertible, the quasideterminant |A4|,; can be defined using formula (1.2.2).
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Sometimes it is convenient to adopt a more graphic notation for the

quasideterminant by boxing the element a;. For 4 = (ay), i,j =1, ...,n, we write
ar dig N /AT
4], = |ap .. ceo pp |
Anl ... Qg cee Gy

If 4 is a generic n x n-matrix (in the sense that all square submatrices of A4 are
invertible), then there exist #> quasideterminants of 4. However, a nongeneric matrix
may have k quasideterminants, where 0 <k <#”. Example 1.2.3(a) shows that each of
the quasideterminants |A4|,;, |A4]5, |4]5, |4|,, of a 2 x 2-matrix A is defined
whenever the corresponding element ay, a1, aia, ap1 is invertible.

Remark. The definition of the quasideterminant can be generalized to define |4/; for
a matrix A4 = (a;) in which each a;; is an invertible morphism V;— V; in an additive
category C and the matrix 4”7 of morphisms is invertible. In this case the
quasideterminant |4|,, is a morphism from the object ¥ to the object V),.

The next example shows that the notion of a quasideterminant is not a
generalization of a determinant over a commutative ring, but rather a generalization
of a ratio of two determinants.

Example. If the elements g; of the matrix 4 commute, then

det 4

A .
4] det Arq

_ +
by = (_1)17 q

We will show in Section 3 that similar expressions for quasideterminants can be
given for quantum matrices, quaternionic matrices, Capelli matrices and other cases
listed in the Introduction.

In general quasideterminants are not polynomials in their entries, but
(noncommutative) rational functions. The following theorem was conjectured by
Gelfand and Retakh, and proved by Reutenauer [Re] in a slightly different form.

Theorem 1.2.7. Quasideterminants of the n x n-matrix X = (x;;) with formal entries
have the inversion height n — 1 over the free division ring F(X), X = {x;}.

In the commutative case determinants are finite sums of monomials with
appropriate coefficients. As is shown in [GR1,GR2], in the noncommutative case
quasideterminants of a matrix X = (x;) with formal entries x;; can be identified with
formal power series in the matrix entries or their inverse. A simple example of this
type is described below.
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Let X = (x;), i,j=1,...,n, be a matrix with formal entries. Denote by E, the
identity matrix of order n and by I',, the complete oriented graph with vertices
{1,2,...,n}, with the arrow from i to ;j labeled by x; A path p:
i—ki—ky— - —k,—jis labeled by the word w = Xk, Xk, 1, Xkoks - - Xk, j-

Denote by Pj; the set of words labelling paths going from i to j, i.e. the set
of words of the form w = Xix, Xk, k, Xioks - - - Xk, j- A simple path is a path p such that
ky#i,j for every s. Denote by P;’ the set of words labelling simple paths
from i to j.

Let R be the ring of formal power series in x;; over a field. From [Co, Section 4], it
follows that there is a canonical embedding of R in a division ring D such that the
image of R generates D. We identify R with its image in D.

Proposition 1.2.8. Let i,j be two distinct integers between 1 and n. The rational
Sunctions |I, — X|;;, |1, — X|!-;1 are defined in D and

L= X[ =1-=>"w, L — X|;' = > ow

we P we P

Example. For n =2,

‘Iz _X‘ll =1 — X11 — Z xlzxgzle.

p=0

For some matrices of special form over a ring, quasideterminants can be expressed
as polynomials in the entries of the matrix. The next proposition shows that this
holds, in particular, for the so-called almost triangular matrices. Such matrices play
an important role in many papers, including [DS,Ko,Gi].

Proposition 1.2.9. The following quasideterminant is a polynomial in its entries:

an dip di1z

—1 dyy dx Ay
0 -1 ass aszy,
0 oo =1 Aun
= dipt+ E a1y 4y 41, o Ajp+1, js - - Ljg+-1n-

I<fi<p<-<je<n

Remark. Denote the expression on right-hand side by P(4). Note that (—1)""' P(4)
equals to the determinant of the almost upper-triangular matrix over a commutative
ring. For noncommutative almost upper triangular matrices, Givental [Gi] (and

others) defined the determinant as (—1)""'P(A4).



68 L Gelfand et al. | Advances in Mathematics 193 (2005) 56141

Example. For n = 3 we have

P(A) = a3 + ayax + appasz + anarass.

1.3. Transformation properties of quasideterminants

Let A = (a;) be a square matrix of order n over a ring R.

(i) The quasideterminant |A|pq does not depend on permutations of rows and
columns in the matrix 4 that do not involve the pth row and the gth column. This
follows from Proposition 1.2.3.

(i) The multiplication of rows and columns. Let the matrix B = (b;;) be obtained
from the matrix 4 by multiplying the ith row by A€ R from the left, i.e., b; = Aa;; and
bij = ayj for k#i. Then

. HAly i k=i,
1Bliy = 4|, if k#iand 2 is invertible.

Let the matrix C = (¢;) be obtained from the matrix A by multiplying the jth
column by ueR from the right, i.e. ¢; = a;p and ¢; = ay for all i and [#;. Then

Y7\ |A|, if I#j and u is invertible.

(ii1) The addition of rows and columns. Let the matrix B be obtained from A4 by
replacing the kth row of 4 with the sum of the kth and /th rows, i.e., by; = ax; + ay,
b,‘j = a; for i#k. Then

|A|ij:|B| i=1,..k—1Lk+1, ..n j=1 ..n

ij’

Let the matrix C be obtained from A by replacing the kth column of 4 with the
sum of the kth and /th columns, i.e., cix = ax + ay, ¢; = ay for j#k. Then

Al =1Clys i=1,n, ol =141, n

i’

1.4. General properties of quasideterminants

1.4.1. Two involutions (see [GR4])

For a square matrix 4 = (a;) over a ring R, denote by /4 = A~' the inverse
matrix (if it exists), and by HA = (aﬁl) the Hadamard inverse matrix (also if it
exists). It is evident that if 14 exists, then I°4 = A, and if HA exists, then H>4 = A.

Let A~! = (by). According to Theorem 1.2.1, b; = |A|;1 This formula can be
rewritten in the following form.
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Theorem 1.4.1. For a square matrix A over a ring R,
HI(A4) = (|4];) (1.4.1)
provided that all quasideterminants |A|; exist.

1.4.2. Homological relations (see [GR])
Let X = (x;) be a square matrix of order n with formal entries. For 1<k, /<n let

X" be the submatrix of order n — 1 of the matrix X obtained by deleting the kth row
and the /th column. Quasideterminants of the matrix X and the submatrices are
connected by the following homological relations.

Theorem 1.4.2. (i) Row homological relations:
—|Al; - A7 = 1Al - 1AV s#
(i1) Column homological relations:

-1 i1 —1 .
*|Akj|iz Ay = 14" - Al 1)

The same relations hold for matrices over a ring R provided the corresponding
quasideterminants exist and are invertible.

A consequence of homological relations is that the ratio of two quasideterminants
of an n x n matrix (each being a rational function of inversion height n — 1) actually
equals a ration of two rational functions each having inversion height <n — 1.

1.4.3. Heredity
Let A = (a;) be an n x n matrix over a ring R, and let

Ay ... Ay
4= (1.4.2)
Asl Ass

be a block decomposition of A4, where each 4,, is a k, x [, matrix, ki + --- + k, =
Iy 4+ --- + 1, = n. Let us choose p’ and ¢ such that k,, = I, so that 4, is a square
matrix.

Let also X = (x,,) be a matrix with formal variables and |X],, be the p'q-
quasideterminant of X. In the formula for |X],, as a rational function in variable
Xpq We can substitute each variable x,, with the corresponding matrix 4,,, obtaining
a rational expression F(A,,). Let us note that all matrix operations in this rational
expression formally make sense, i.e., in each addition, the orders of summands
coincide, in each multiplication, the number of columns of the first multiplier equals
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the number of rows of the second multiplier, and each matrix that has to be inverted
is a square matrix. Let us assume that all matrices in this rational expression for that
need to be inverted, are indeed invertible over R. Computing F(A4,,), we obtain an
ky x Iy matrix over R, whose rows are naturally numbered by indices

i:k1+"'+kpf,1+1,...7k1+""f’kp/ (1.4.3)
and columns are numbered by indices
J=h+-+lya+1, .0+ +1. (1.4.4)

We denote this matrix by |X],, (4).
Let us note that under our assumptions, k, = Iy, so that |X],,(4) is a square
matrix over R.

Theorem 1.4.3. Let the index i lies in the range (1.4.3) and the index j lies in the range
(1.4.4). Let us assume that the matrix |X|,,(A) is defined. Then each of the

quasideterminants |A|; and || X|,,, (A)|; exist if and only if the other exists, and in this
case

Al = 11Xy (4)] - (1.4.5)

Example 1. Letin (1.4.2)s=2,p'=¢' =1l and k; = /+ 1 = 1. Then formula (1.4.5)
becomes the inductive definition of the quasideterminant |A4|; (see Definition 1.2.5).

Example 2. Let

apl ap ap daa
a) ap A dxu
as ax az axn
ds) g A43  Agq
Take the decomposition 4 = (j;i f;ii) of A4 into four 2 x 2 matrices, so that 4;; =

(”“ ‘“2), Ap = (“'3 “'4), Ay = (“31 “32>, Ay = (“33 “3“>. Let us use formula

a  an a3 axy as) ap as3y A4

(1.4.5) to find the quasideterminant |A4|,;. We have

|X[15(A) = A1y — A Ay An
B ((l13 a14> B <a11 au) (6131 a32>1<a33 a34>
C \axn  ax a1 an/) \aa  ap as3  das
_(a13—... 6114—...>
N azys — ... dy4 — ... '
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Denote the matrix in the right-hand side of this formula by ("‘3 ‘ﬁ“‘). Then

€3 (4

13 Ci4
4l,3 = ) )
€23 C24 |13
or, in other notation,
_ || ¢3 C14
|A]5 = .
€23 C24

1.4.4. A generalization of the homological relations

Homological relations admit the following generalization. For a matrix 4 = (aj),
iel,jeJ, and two subsets LI, M =J denote by AXM the submatrix of the matrix
A obtained by deleting the rows with the indexes /€L and the columns with the
indexes me M. Let A be a square matrix, L = ({1, ...,{x), M = (mq, ...,my). Set
M[ = M\{m,‘}, i= 07 ,k

Theorem 1.4.4 (Gelfand et al. [GR1,GR2]). For p¢ L we have

L.M;
Z ‘A |pm, ‘/m, - P/7

k

Z ‘A|m/ |AM[7L‘111,-p = 5/’p7
i=0

provided the corresponding quasideterminants are defined and the matrices \A\;flﬂ

-1 . .
|A|,,, are invertible over R.

1.4.5. Quasideterminants and Kronecker tensor products

Let A = (a;), B = (b,s) be matrices over a ring R. Denote by C=A® B the
Kronecker tensor product, i.e., the matrix with entries numbered by indices (ia, jf),
and with the (i, jf)th entry equal to ¢y, jg = a;byp.

Proposition 1.4.5. If' quasideterminants |A|; and |B|,, are defined, then the

i
quasideterminant |A® B|;, .5 is defined and

|[A®B|;,, ;5 = |Al;|Bl,5-

Note that in the commutative case the corresponding identity determinants is
different. Namely, if 4 is a m x m-matrix and Bis a n X n-matrix over a commutative
ring, then det(4® B) = (det A)"(det B)™.
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1.4.6. Quasideterminants and matrix rank
Let A = (a;) be a matrix over a division ring.

Proposition 1.4.6. If the quasideterminant |A|,-J- is defined, then the following statements
are equivalent.

(i) |4]; =0,
(i) the ith row of the matrix A is a left linear combination of the other rows of A;
(ii1) the jth column of the matrix A is a right linear combination of the other
columns of A.

Example. Let i,j=1,2 and |4|,, =0, i.e., aj; — a12a2‘2‘a21 = 0. Therefore, a;; =
Jayy, where /. = apas, . Since ajp = (ajpas, )a, the first row of 4 is proportional to
the second row.

There exists the notion of linear dependence for elements of a (right or left) vector
space over a division ring. So there exists the notion of the row rank (the dimension
of the left vector space spanned by the rows) and the notion of the column rank (the
dimension of the right vector space spanned by the columns) and these ranks are
equal [Ja,Co]. This also follows from Proposition 1.4.6.

By definition, an r-quasiminor of a square matrix 4 is a quasideterminant of an
r x r-submatrix of 4.

Proposition 1.4.7. The rank of the matrix A over a division algebra is =r if and only if
at least one r-quasiminor of the matrix A is defined and is not equal to zero.

1.5. Basic identities

1.5.1. Row and column decomposition
The following result is an analogue of the classical expansion of a determinant by
a row or a column.

Proposition 1.5.1. Let A be a matrix over a ring R. For each k#p and each (#q
we have

|Alpy = dpg — Zap/(|qu|k;) A" |y
J#4q
' -1
|A|pq =dpg — Z |A1q‘pi(|qu|i/) dig,
i#p

provided all terms in right-hand sides of these expressions are defined.

As it was pointed out in [KL], Proposition 1.5.1 immediately follows from the
homological relations (Theorem 1.4.2).
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1.5.2. Sylvester’s identity
Let 4= (Ay), i,j=1,...,n, be a matrix over a ring R and Ay = (a;), i,j =
1, ..., k, a submatrix of A that is invertible over R. For p,g=k+ 1, ...,n set

dig

Ay :

Cpg = g
dp1 oo Gpk g,

These quasideterminants are defined because matrix A4 is invertible.
Consider the (n — k) x (n — k) matrix

C=(cy), pg=k+1,...,n
The submatrix A is called the pivot for the matrix C.
Theorem 1.5.2 (see Gelfand and Retakh [GR]). For i,j=k+1,...,n,

|A|ij = ‘C|g/

The commutative version of Theorem 1.5.2 is the following Sylvester’s theorem.

Theorem 1.5.3. Let A = (a;), i,j=1,...,n, be a matrix over a commutative ring.
Suppose that the submatrix Ay = (a;), i,j=1,....k, of A is invertible. For p,q =
k+1,...,nset

aj q
- Ay
by = det ,
Aiq
apl dpk Apq

Then

Remark 1. A quasideterminant of an n X n-matrix A4 is equal to the corresponding
quasideterminant of a 2 x 2-matrix consisting of (n — 1) x (n — 1)-quasiminors of
the matrix 4, or to the quasideterminant of an (n — 1) x (n — 1)-matrix consisting of
2 x 2-quasiminors of the matrix 4. One can use any of these procedures for an
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inductive definition of quasideterminants. In fact, Heyting [H] essentially defined the
quasideterminants |4|,, for matrices 4 = (a;), i,j =1, ..., n, in this way.

Remark 2. Theorem 1.5.2 can be generalized to the case where A4, is a square
submatrix of 4 formed by some (not necessarily consecutive and not necessarily the
same) rows and columns of A. In particular, in the case where Ay = (a;),i,j =

2,...,n—1, Theorem 1.5.2 is an analogue of a well-known commutative identity
which is called the “Lewis Carroll identity” (see, for example, [Ho]).

1.5.3. Inversion for quasiminors
The following theorem was formulated in [GR]. For a matrix 4 = (a;), i€l, jeJ,
over a ring 4 and subsets Pc I, QcJ denote by App the submatrix

Apg = (asp), P, feQ.
Let |I| = |J| and B= A~! = (b,,). Suppose that |P| = |Q)|.
Theorem 1.5.4. Let k¢ P,/ ¢ Q. Then

|4poky.00 ey |kr - I1Brpnola = 1.

Set P=1\{k},Q =J\{/}. Then this theorem leads to the already mentioned
identity

|4l - boe = 1.

Example. Theorem 1.5.4 implies the following identity for principal quasiminors.
Let 4 = (ay), i,j=1,...,n be an invertible matrix over R and B = (b;) = A"
For a fixed k, 1 <k<n, set Ay = (a;), i,j=1, ...,k and B¥) = (by), i,j=1k,...,n.
Then

|A(k)|kk : \B(k)|kk =1L

1.5.4. Multiplicative properties of quasideterminants
Let X = (x,), Y= (yr) be nx n-matrices. The following statement follows
directly from Definition 1.2.2.

Theorem 1.5.5. We have

-1 - -1 -1
|XY|ij :Z |Y|pj ‘X|ip :
p=1
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1.6. Noncommutative linear algebra

In this section we use quasideterminants to noncommutative generalizations of
basic theorems about systems of linear equations (see [GR,GR1,GR2)).
1.6.1. Solutions of systems of linear equations
Theorem 1.6.1. Let A = (a;;) be an n x n matrix over a ring R. Assume that all the

quasideterminants |A|; are defined and invertible. Then

anxi + ... +apx, =&

an X1 + ... + AuuXy = én

for some x;€ R if and only if

n
xi=> |Al'E i=1,.n
J=1

1.6.2. Cramer’s rule
Let A,(&) be the n x n-matrix obtained by replacing the /th column of the matrix
A with the column (&4, ..., ¢&,).

Theorem 1.6.2. In notation of Theorem 1.6.1, if the quasideterminants |A| i and
|4;(&)|; are defined, then

|A|gjxj = |Aj(é)|gj-

1.6.3. Cayley—Hamilton theorem

Let A = (a;), i,j =1, ...,n, be a matrix over a ring R. Denote by E, the identity
matrix of order n.

Let ¢ be a formal variable. Set f;; = |tE, — A|; for 1<i,j<n. Then f;(7) is a
rational function in . Define the matrix function f;(¢) by replacing in f;(¢) each
element a; with the matrix d; = a;E, of order n and the variable ¢ by the matrix 4.
The functions fj(¢) are called the characteristic functions of the matrix 4.

The following theorem was stated in [GR1,GR2].

Theorem 1.6.3. f;(A) =0foralij=1,..,n

2. Important example: quaternionic quasideterminants

As an example, we compute here quasideterminants of quaternionic matrices.
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2.1. Norms of quaternionic matrices

Let H be the algebra of quaternions. Algebra H is an algebra over the field of real
numbers R with generators i, j, k such that i’ = j* = k> = —1 and ij = k, jk = i, ki = j.
It follows from the definition that ij + ji = 0, ik + ki = 0, jk + kj = 0.

Algebra H possesses a standard anti-involution ar—a: if a = x + yi + zj + 1k,
X,y,z,teR, then @ = x — yi — zj — tk. It follows that aa = x> + > + 2> + £*. The
multiplicative functional v : H— R, where v(a) = aa is called the norm of a. One
can see that ¢! = i for a#0.

We will need the following generalization of the norm v to quaternionic matrices.
Let M(n,H) be the R-algebra of quaternionic matrices of order n. There exists a
unique multiplicative functional v : M (n, H) - Rx( such that

(i) v(4) = 0 if and only if the matrix A4 is noninvertible,

(ii) If A’ is obtained from A4 by adding a left-multiple of a row to another row or a
right-multiple of a column to another column, then v(4') = v(4).

(iii) v(E,) = | where E, is the identity matrix of order n.

The number v(4) is called the norm of the quaternionic matrix 4.

For a quaternionic matrix 4 = (a;), i,j=1,...,n, denote by A4* = (a;) the
conjugate matrix. It is known that v(A) coincides with the Dieudonne determinant of
A and with the Moore determinant of 44* (see [As] and Sections 3.2-3.4 below). The
norm v(A) is a real number and it is equal to an alternating sum of monomials of
order 2n in the a; and ;. An expression for v(A4) is given by Theorem 2.1.2 below.

Let A = (a;), i,j=1,...,n, be a quaternionic matrix. Let I = {ij, ..., ik}, J=
{J1,....jk} be two ordered sets of natural numbers such that all i, and all j, are
distinct. Set

Z1g = Qiy jy 8y jy Ay jy - - D i Wiy -

Denote by y;(4) the sum of all z; ;(A) such that i; =i. One can easily see that
u;(A) is a real number since with each monomial z;; it contains the conjugate
monomial Z;; = zp g, where I' = {iy, i, ik—1..., 12}, J = {Jjk, Ji—1s ---,J1 }-
Proposition 2.1.1. The sum p;(A) does not depend on i.

Example. For n = 1 the statement is obvious. For » = 2 we have
11 (A) = anayandn + a12dnanan,
1o (A) = anapana + axdana.
Note that for two arbitrary quaternions x, y we have xy + px = 2R(xy) = 2R(yx) =

yx + Xy, where R(a) is the real part of the quaternion a. By setting x = a;1ay;,
¥ = axa, one see that u (A4) = py(A).
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Proposition 2.1.1 shows that we may omit the index 7 in u;,(4) and denote it by

p(A).

Let A = (a;), i,j=1,...,n be a matrix. We call an (unordered) set of square

submatrices {4y, ..., 4,} where 4, = (a;), iel,, jeJ, a complete set if I,nI, =
JynJy=0forallp£gand J, I, =U, J, = {1,...,n}.

Theorem 2.1.2. Let A = (ay), i,j =1, ...,n be a quaternionic matrix. Then

v(A) = D (DT Ay 4y),

where the sum is taken over all complete sets (A, ..., A,) of submatrices of A, k; is the
order of the matrix A;.

Example. For n =2 we have

v(A) = v(an)v(an) + v(an)v(ax) — (an1@ianan + andnadn).

Corollary 2.1.3. Let A be a square quaternionic matrix. Fix an arbitrary ie {1, ... n}.
Then

v(A) =D (=D)"P (B u(By),

where the sum is taken over all complete sets of submatrices (By,B,) such that B,
contains an element from the ith row, k(By) the order of By, and v(B)) = 1 if B, = A.

2.2. Quasideterminants of quaternionic matrices

This section contains results from [GRW1].

Let A = (a;), i,j=1,...,n, be a quaternionic matrix. Let / = {i}, ..., i} and J =
{j1,.--,jx} be two ordered sets of natural numbers 1<ij,b,...,ix<n and
1<j1,/2, ..., jk <n such that all i, are distinct and all j, are distinct. For k=1 set
my j(A) = a;j,. For k=2 set

my j(A) = iy, 8ij, Qi 8 jy G - - Ay, iy -
If the matrix A4 is Hermitian, i.e., a; = a; for all i, j, then
myj(A) = ai i, iy @i i - B i -
To a quaternionic matrix A = (a,9), p,q =1, ...,n, and to a fixed row index 7 and

a column index j we associate a polynomial in a4, d,,, which we call the (i,/)th
double permanent of A4.



78 L Gelfand et al. | Advances in Mathematics 193 (2005) 56141

Definition 2.2.1. The (i,/)th double permanent of A4 is the sum

mi(A) =Y my(4),

taken over all orderings I = {i\, ..., iy },J = {1, ..., Ju} of {1, ...,n} such that i, =i
andj1 :j.

Example. For n =2
m11(A) = ananas.
Forn=3

m11(A) = a12a3a33d23a21 + A1280023033031 + A13833032022021 + A1382302203203] -

For a submatrix B of 4 denote by B¢ the matrix obtained from A by deleting all
rows and columns containing elements from B. If B is a k x k-matrix, then B° is a
(n — k) x (n — k)-matrix. B¢ is called the complementary submatrix of B.

Quasideterminants of a matrix 4 = (a;) are rational functions of elements a;.
Therefore, for a quaternionic matrix A, its quasideterminants are polynomials
in a; and their conjugates, with coefficients that are rational functions of a;
always taking rational values. The following theorem gives expressions for these
polynomials.

Theorem 2.2.2. If the quasideterminant \A\U of a quaternionic matrix is defined,
then

v(A”) Al = (=1 By (B),

where the sum is taken over all square submatrices B of A containing a;,k(B) is the
order of B, and we set v(B°) = 1 for B = A.

Recall that according to Proposition 1.2.6 the quasideterminant \A|l] is defined if
the matrix 4% is invertible. In this case v(4%) is invertible, so that formula (2.2.1)
indeed gives an expression for [4];.

The right-hand side in (2.2.1) is a linear combination with real coefficients of
monomials of lengths 1,3,...,2n—1 in a; and a;. The number u(n) of such

monomials for a matrix of order n is u(n) = 14 (n — 1)*u(n — 1).
Example. For n =2

v(an)|Aly, = v(an)an — andra.
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Forn=3
V(All)|A|H ZV(A“)CI” — v(a33)a12&22a21 — V(azg)a126_132a3]
—v(as)aanay — v(ax)a3azas; + a1ndnasdsa)
+ a12020a23a33a31 + A13G33A32022021 + A13G23A2203203) -

The example shows how to simplify the general formula for quasideterminants of
matrix of order 3 (see Section 1.2) for quaternionic matrices.

The following theorem, which is similar to Corollary 2.1.3, shows that the
coefficients in formula (2.2.1) are uniquely defined.

Theorem 2.2.3. Let quasideterminants |A|; of quaternionic matrices are given by the
Sformula

EA) Al = 3 (=1 OB my(B)

and all coefficients £(C) depend of submatrix C only, then £(C) = v(C) for all square
matrix C.

Example. For n =2 set a;; = 0. Then f(azz)alzaz_z‘ ax| = appaxas; . This implies that
é(axn) = anayn = v(axn).

3. Noncommutative determinants

Noncommutative determinants were defined in different and, sometimes, not
related situations. In this section we present some results from [GR,GRI,
GR2,GRWI1] describing a universal approach to noncommutative determinants
and norms of noncommutative matrices based on the notion of quasideter-
minants.

3.1. Noncommutative determinants as products of quasiminors
Let A = (a;), i,j =1, ...,n, be a matrix over a division ring R such that all square

submatrices of A4 are invertible. For {ij,...,i},{J1, .-, jxt ={1,...,n} define
AieiJe to be the submatrix of 4 obtained by deleting rows with indices

i1, ...,ix and columns with indices jj,...,jx. Next, for any orderings =
(i1y oeesin)y I = (J1y --esjun) of {1, ...,n} set
Dy (A4) = |A|[1j1|Ailj] [2/2|Ai]i2’j]j2|i3j3 oo iy e

In the commutative case Dy ;(A) is, up the sign, the determinant of 4. When A4 is a
quantum matrix Dy ;(A) differs from the quantum determinant of 4 by a factor
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depending on ¢ [GR,GR1,KL]. The same is true for some other noncommutative
algebras. This suggests to call Dy j(A) the (I,J)-predeterminants of 4. From the
“categorical point of view” the expressions D, ;(A4) where = (i1, ...,iy), [ =
(ia, 13, ..., in,01) are particularly important. We denote Di(A) = D; 7(A). It is also
convenient to have the basic predeterminant '

A(A) = Dy1a..ny f23...01}- (3.1.1)

We use the homological relations for quasideterminants to compare different Dy ;.
Here we restrict ourselves to elementary transformations of 7 and J.

Let  I=(i1,...,ip,bps1,--rin) and  J=(Ji,..c.jpifpiis--sjn). Set I'=
(i1s oeerlpitspy eoesin)y, I = (J1s oo sfipt 1o dps -2 Jn). Set also

X = |A| |Ai1’j“ ..|Ail--~ip725./ls--~7jp72|

i1, i iy 2" ip—15Jp-17

Y = |Ail~~~ip+17j|7"'7jp+| | ) a
ipt2y Jpt2 "ty Jnd

By, Jiyeees Ji
u= ‘Al ps J1s ,Jp|i -
p+15 Jp+1

Wi = |Ail~<-ip—lip+|vj]-,~“'rj['|

iy, Jpr1?
— | Al dpy T Jp—t
wy = A" b |i,,+17j,,+1’
Proposition 3.1.1. We have
D]Jr = —D131Y71uilwzilul172 Y,

Dpj= —qule’IDI_J Y’lu’1w1 Y.

Let C be a commutative ring with a unit and /' : R— C be a multiplicative map, i.e.
f(ab) = f(a)f (b) for all a,beR.

Let I= (i1, ...,in),J = (j1, ...,jn) be any orderings of (1, ...,n). For an element ¢
from the symmetric group of nth order set ¢(I) = (a(i1), ...,0(in)). Let p(o) be the
parity of o.

Proposition 3.1.1 immediately implies the following theorem.

Theorem 3.1.2. In notations of Section 3.1 we have
S(Drs(A)) = f (1)L (Do) ) (4)).

It follows that f(Dy(A) is uniquely defined up to a power of f(—1). We call
S(Di1..n1..n)(A)) the f-determinant 4 and denote it by fD(A4). Note that if f is a
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homomorphism then f-determinant fD(A4) equals to the usual determinant of the
commutative matrix f(A4).

Corollary 3.1.3. We have
/D(AB) =fD(A) - fD(B).

When R is the algebra of quaternions and f(a) = v(a) = aa, or, in other words, f is
the quaternionic norm, then one can see that fD(a) is the matrix quaternionic norm
v(A) (see Section 2.1).

In Theorems 3.1.4-3.1.6 we present formulas for determinants of triangular and
almost triangular matrices. A matrix 4 = (a;),i,j=1,...,n, is called an upper-
triangular matrix if @; = 0 for i>;. An upper-triangular matrix A4 is called a generic
upper-triangular matrix if every square submatrix 4 consisting of the rows
i1 <k < - <i; and the columns j; <jp < --- <Ji such that i; <jj, b <jo, ..., i <Ji, IS
invertible.

Theorem 3.1.4. Let A = (ay), i,j =1, ...,n, be a generic upper-triangular matrix. The
determinants D;,;, . ; (A) are defined if and only if iy = n. In this case

_ n,ig -1 niz niz,i2i3 -1 nig izi}
Dyiy. iy (A) = am - |4 igiy | A"y A i [ AR,

iz}’l

.I',,,] izn

. ni2i3...i”,1,i2i3...i,, —1 . . ‘ ﬂigig...i,l,],izl'}...l'nl
|A iyn aln’n A

in:
In particular,

—1 —1
Dnﬁnfl...ZA,l (A) = anna,1,11nan71,nflanfl,n Ay, dndig.

A matrix 4 = (ay),i,j=1,...,n, is called an almost upper-triangular matrix if
a; =0 for i>j+ 1. An almost upper-triangular matrix 4 is called a Frobenius
matrix if @; = 0 for all j#n and i#j+ 1, and gy ;=1 forj=1,...,n— 1.

Theorem 3.1.5. If A is invertible upper-triangular matrix, then

Dy 1. 2(A4) = |Al,nn-10n-1n-2...a21.

By Proposition 1.2.7, the determinant D; ,,,—1.. 2(A4) of an upper-triangular matrix
A is polynomial in a;.
Let p(I) be the parity of the ordering I = (iy, ..., ).

Theorem 3.1.6. If A is a Frobenius matrix and the determinant D;(A) is defined, then
Di(A) = (=1 DH gy,
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Now let R be a division ring, R* = R\{0} the monoid of invertible elements in R
and ©: R*— R"/[R*,R*] the canonical homomorphism. To the abelian group
R*/[R*, R*] we adjoin the zero element 0 with obvious multiplication, and denote the
obtained semi-group by R. Extend n to a map R— R by setting 7(0) = 0.

We recall here the classical notion of the Dieudonne determinant (see [D,A]).
There exists a unique homomorphism

such that

(i) detd’ = jidet A for any matrix A’ obtained from A4 € M, (R) by multiplying one
row of A from the left by y;

(ii) det A” = det A4 for any matrix A” obtained from A4 by adding one row to
another;

(iii) det(E,) = 1 for the identity matrix E,,.

The homomorphism det is called the Dieudonne determinant.

It is known that det 4 = 0 if rank(4) <n (see [A, Chapter 4]). The next proposition
gives a construction of the Dieudonne determinant in the case where rank(A4) = n.

Proposition 3.1.7. Let A be an n x n-matrix over a division ring R. If rank(A4) = n, then

(i) There exist orderings I and J of {1, ...,n} such that Dy ;(A) is defined.
(i) If Dy (A) is defined, then the Dieudonne determinant is given by the formula
det A = p(I)p(J)n(Dy(A)), where p(I) is the parity of the ordering I.

Note that Draxl [Dr] introduced the Dieudonne predeterminant, denoted det. For
a generic matrix A over a division ring there exists the Gauss decomposition 4 =
UDL where U, D, L are upper-unipotent, diagonal, and lower-unipotent matrices.
Then Draxl det(A4) is defined as the product of diagonal elements in D from top to
the bottom. For nongeneric matrices Draxl used the Bruhat decomposition instead
of the Gauss decomposition.

Proposition 3.1.8. det(A4) = A(A), where A(A) is given by (3.1.1).

Proof (For a generic 4). Let yy, ..., y, be the diagonal elements in D from top to the
bottom. As shown in [GRI1,GR2] (see also 4.9), y, = |4!2-k=112.k=1| = Then
0et(A) = yiy2...yn = 4(A4). O

Below we consider below special examples of noncommutative determinants.
3.2. Dieudonne determinant for quaternions
Let A = (a;), i,j=1,...,n, be a quaternionic matrix. If 4 is not invertible, then

the Dieudonne determinant of 4 equals zero. By Proposition 3.1.7, if A4 is invertible,
there exist orderings I= (i1, ...,i),J = (ji,...,ju) of {l,...,n} such that the
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following expressions are defined:

Dy (A4) = ‘A|i1j| |4V, AT

iz,jz| iajy * 0 Qi

By Theorem 2.2.2, D (A) can be expressed as a polynomial in a; and @; with real
coefficients.
In the quaternionic case the Dieudonne determinant D coincides with the map

det : M,(H)->Rx

(see [As]).
The following proposition generalizes a result in [VP].

Proposition 3.2.1. In the quaternionic case for each I,J we have
det A4 = v(D; 4(A4))"?
(the positive square root).

The proof of Proposition 3.2.1 follows from the homological relations for
quasideterminants.

3.3. Moore determinants of Herimitian quaternionic matrices

A quaternionic matrix 4 = (a;), i,j =1, ...,n, is called Hermitian if a; = a; for
all i,j. It follows that all diagonal elements of 4 are real numbers and that the
submatrices A", A'212 ... are Hermitian.

The notion of determinant for Hermitian quaternionic matrices was introduced by
Moore in 1922 [M,MB]. Here is the original definition.

Let A = (a;), i,j=1,...,n, be a matrix over a ring. Let ¢ be a permutation of
{1,...,n}. Write ¢ as a product of disjoint cycles. Since disjoint cycles commute, we
may write

0 = (k]] ---kljl)(kzl ...k2_/2)...(k,,1] ~~-kmjm)7

where for each i, we have k; <kj; for all j>1, and ki3 >k >--->kpy. This
expression is unique. Let p(o) be the parity of 6. The Moore determinant M (A4) is
defined as follows:

M(4) = Z P(U)ak“,klz s ey Jony Yoy gy =+« gy o + (331)

geS,

(There are equivalent formulations of this definition; e.g., one can require k;; > k;; for
all j>1.) If 4 is Hermitian quaternionic matrix then M(A4) is a real number. Moore
determinants have nice features and are widely used (see, for example, [Al,As,Dyl]).
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We will show (Theorem 3.3.2) that determinants of Hermitian quaternionic
matrices can be obtained using our general approach. First we prove that for a
quaternionic Hermitian matrix A4, the determinants Dy ;(A4) coincide up to a sign.

Recall that 4(4) = Dy p(A) for I={l1,...,n} and that 4(A4) is a pre-Dieudonne
determinant in the sense of [Dr]. If 4 is Hermitian, then 4(A) is a product of real
numbers and, therefore, 4(A) is real.

Proposition 3.3.1. Let p(I) be the parity of the ordering I. Then A(A)=
p)p(J)Dy s (A).

The proof follows from homological relations for quasideterminants.

Theorem 3.3.2. Let A be a Hermitian quaternionic matrix. Then A(A) = M(A)
(see (3.3.1)).

Proof. We use the noncommutative Sylvester formula for quasideterminants
(Theorem 1.5.2).
For i,j =2, ...,n define a Hermitian matrix B; by the formula

an  aiy
By — < 1 11).
i aj
Let b,] = M(Bl]) and Cij = |Blj|ll
Note that B = (b;) and C = (c¢;) also are Hermitian matrices. It follows from
(3.3.1) that M(A) = a2,"M(B). Note, that M(B) = a",' M(C), therefore, M(A) =
amM(C).
By Theorem 1.5.2, |4|,; = |C|,;, |4 |5, = |CM,,, ... . So,
|A11 |22‘A” |22 |A12...n—1,12...n—1 |n71’n71
_ |C11|22|C11|22“.|C12...n71,12...n71|

n—ln—1-

The product on the left-hand side equals 4(4)a,,! and the product on right-hand side
equals 4(C), so 4(A) = A(C)a,, = M(4). O

3.4. Moore determinants and norms of quaternionic matrices
Proposition 3.4.1. For generic matrices A, B we have
v(A) = A4(A)A(A4") = 4(A44").
Since 44* is a Hermitian matrix, one has the following

Corollary 3.4.2. v(A4) = M(A4A4*).
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3.5. Study determinants

An embedding of the field of complex numbers C into H is defined by an image of
ieC. Chose the embedding given by x + yir—x + yi + 0j + Ok, where x,yeR and
identify C with its image in H. Then any quaternion a can be uniquely written as
a=a+ jf where a, feC.

Let M(n,F) be the algebra of matrices of order n over a field F. Define a
homomorphism 6: H— M(2,C) by setting

o« —p
0(a) = .
o-( 7)

For A = (a;)e M(n,H), set 0,(4) = (0(a;)). This extends 0 to homomorphism of
matrix algebras

0,: M(n,H)->M(2n,C).

In 1920, Study [St] defined a determinant S(A4) of a quaternionic matrix 4 of order
n by setting S(A4) = det 0,(A4). Here det is the standard determinant of a complex
matrix. The following proposition is well known (see [As]).

Proposition 3.5.1. For any quaternionic matrix A

S(4) = M(A4Y).

The proof in [As] was based on properties of eigenvalues of quaternionic matrices.
Our proof based on Sylvester’s identity and homological relations actually shows
that S(4) = v(A) for a generic matrix 4.

3.6. Quantum determinants

Note, first of all, that quantum determinants and the Capelli determinants (to be
discussed in Section 3.7) are not defined for all matrices over the corresponding
algebras. For this reason, they are not actual determinants, but, rather,
“determinant-like”” expressions. However, using the traditional terminology, we will
talk about quantum and Capelli determinants.

We say that 4 = (a;), i,j=1,...,n, is a quantum matrix if, for some central
invertible element geF, the elements a; satisfy the following commutation
relations:

~1
aiay = q agay  for k<l,

1 ..
aia = q apay  for i<j,
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a;1aje = ajca; for l<j,k<l,
1 ..
agay — apag. = (¢~ — q)agay.  for i<j k<l (3.6.1)

Denote by A(n,q) the algebra with generators (ay;), i,j=1,...,n, satisfying
relations (3.6.1). The center of this algebra is the one-dimensional subspace
generated by the so called quantum determinant of A.

The quantum determinant det, 4 is defined as follows:

dety A = Z (—4)7“”)“15(1)0%(2) e lyg(n)

gesS,

where /(o) is the number of inversions in o.

If 4 is a quantum matrix, then any square submatrix of 4 also is a quantum
matrix with the same g¢.

Note that the algebra A(n,¢) admits the ring of fractions.

Theorem 3.6.1 (Galland and Retakh [GR], Krob and Leclerc [KL]). In the ring of
[fractions of the algebra A(n,q) we have

det, 4 = (—q)i_‘i|A\U ~det, A7 = (—q)i_jdetq AV |4l -

Corollary 3.6.2 (Galland and Retakh [GR], Krob and Leclerc [KL]). In the ring of
fractions of the algebra A(n,q) we have

det, 4 = |A],,|A" |2 ... am
and all factors on the right-hand side commute.

An important generalization of this result for matrices satisfying Faddeev—
Reshetikhin—Takhtadjan relations is given in [ER].

3.7. Capelli determinants

Let X = (x;), i,j=1,...,n be a matrix of formal commuting variables and X7
the transposed matrix. Let D = (9;), 05 = 0/0x;;, be the matrix of the corresponding
differential operators. Since each of the matrices X, D consists of commuting entries,
det X and det D make sense. Let us set X7 D = (f}), so that fj = > x40/0xy;.

Let W be a diagonal matrix, W = diag(0, 1,2, ...,n).

By definition, the Capelli determinant detc,p, of X7 D — W equals to the sum

Z (_])l<g)fa(l)l(fo(2)2 - 5a(2)2) "'(fa(n)n - (l’l - 1>5a(n)n)'

ogeS,

The classical Capelli identity says that the sum is equal to det X det D.
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Set Z = XTD — I,. It was shown in [GR1,GR2] that the Capelli determinant can
be expressed as a product of quasideterminants. More precisely, let D be the algebra
of polynomial differential operators with variables x;;.

Theorem 3.7.1. In the ring of fractions of the algebra D we have
1Z|,11Z" ),y ... 2 = det X det D
and all factors on the left-hand side commute.

It is known [We] that the right-hand side in the theorem is equal to the Capelli
determinant.

This theorem can also be interpreted in a different way.

Let A =(e;), i,j=1,...n be the matrix of the standard generators of the
universal enveloping algebra U(g/,). Recall that these generators satisfy the relations

leij, ex1] = djeir — ey

Let E, be the identity matrix of order n. It is well known (see, for example, [Ho])
that coefficients of the polynomial in a central variable ¢

det(ln + IA) = Z (—1)](6)(5,;(1)1 + l€0(1)1>... (5J(n)n + l(eo-(,,)n —(n— 1)(3J<n)n))

g€eS,

generate the center of U(gl,).
Theorem 3.7.1 can be reformulated in the following way [GKLLRT].

Theorem 3.7.2. det(I, + tA) can be factored in the algebra of formal power series in t
with coefficients in U(gl,):

1+ 1(611 — 1) ter
det(l, +t4) =(1+t¢
et(l, +t4) = (1 + te) texy 1+ t(eas — 1)
1+l(€11—n+1) tey,
ten 1+tlenn —n+1)

and the factors on the right-hand side commute with each other.

The above version is obtained by using the classical embedding of U(gl,) into the
Weyl algebra generated by (x;;,d/0xy), i,j=1,...,n, where e; corresponds to

fi = xii0/0xy;.
k=1
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3.8. Berezinians

Let p(k) be the parity of an integer k, i.e. p(k) = 0 if k is even and p(k) = 1 if k is
odd. A (commutative) super-ring over R’ is a ring R = R°@ R' such that

() a;a;e RPUY) for any a,,eR™, m=0,1,
(i) ab = ba for any aeR°,be R, and cd = —dc for any ¢,deR'.

Let A= (L Y) be an (m+n) x (m+ n)-block-matrix over a super-ring R =
R'@R', where X is an m x m-matrix over R’, T is an n x n-matrix over R’, and
Y,Z are matrices over R'. If T is an invertible matrix, then X — Y7~!Z is an
invertible matrix over commutative ring R°. Super-determinant, or Berezinian, of 4

is defined by the following formula:
Ber A = det(X — YT 'Z)det T~
Note that Ber A€ R.

Theorem 3.8.1. Let R° be a field. Set J, = {1,2, ...k}, k<m+n and A = 47"
Then Ber A is a product of elements of R:

1 -1 -1 ~1))-1
Ber4 = |A|11 |A( )|22"‘ |A<m )|mm|A(M)|m+l,m+1 |A(m+n >|m+n,m+n'
3.9. Cartier-Foata determinants
Let A = (ay), i,j=1,...,n be a matrix such that the entries @; and ay; commute

when i#k. In this case Cartier and Foata [CF,F] defined a determinant of 4 as

detcp 4 = Z (—1)1(”)5110(1)020(2) o lng(n)-

ogesS,

The order of factors in monomials @j4(1)@24(2) ... dng(n) 18 insignificant.
Let C, be the algebra over a field F generated by (a;), i,j =1, ...,n, with relations
ajay = agay if i#k. Algebra C, admits the ring of fractions.

Theorem 3.9.1. In the ring of fractions of algebra C,, let A = (ay), i,j=1,....,nbea
matrix such that the entries a; and ay commute when i#k.

|A],, = (—=1)"*detcg (477) " deter 4

and all factors in (3.9.1) commute.
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Corollary 3.9.2. In the ring of fractions of algebra C, we have
detcr = |A|;,|A" |5 ... dm

and all factors commute.

4. Noncommutative Pliicker and Flag coordinates

Most of the results described in this section were obtained in [GR4].

4.1. Commutative Phicker coordinates

Let k<n and A4 be a k x m-matrix over a commutative ring R. Denote by
A(iy, ..., 0x) the k x k-submatrix of A4 consisting of columns labeled by the indices
ity ..., Ik Define p; ; (A) =det A(iy, ...,i). The elements p; _; (4)€R are called
Pliicker coordinates of the matrix A. The Plicker coordinates p; ; (A) satisfy the
following properties:

(i) (invariance) p;, ., (X4) =det X - p;, ;. (A) for any k x k-matrix X over R;

(i) (skew-symmetry) p; ;. (A) are skew-symmetric in indices ij,...,i; In
particular, p; . ; (4) = 0 if a pair of indices coincides;

(iii) (Pliicker relations) Let iy, ..., ix_; be k — 1 distinct numbers which are chosen
from the set 1, ...,n, and ji, ..., jkr1 be kK + 1 distinct numbers chosen from the same
set. Then

k

> D) Pi i (Djs s i (A) = 0
=1

Example. For k = 2 and n = 4 the Plicker relations in (iii) imply the famous identity

P12(A)p3a(A) — p13(A)p2u(A) + pa3(A)p1a(A4) = 0. (4.1.1)

Historically, Pliicker coordinates were introduced as coordinates on Grassmann
manifolds. Namely, let R = F be a field and Gy, the Grassmannian of k-dimensional
subspaces in the n-dimensional vector space F”. To each k x n-matrix 4 of rank k we
associate the subspace of F” generated by the rows of 4. By the invariance property
(i), we can view each Pliicker coordinate p; ., as a section of a certain ample line
bundle on Gy, and all these sections together define an embedding of Gy, into the
projective space PV of dimension N = (ﬁ) — 1. In this sense, Pliicker coordinates are

projective coordinates on Gy,.
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4.2. Quasi-Plicker coordinates for n x (n+ 1)- and (n+ 1) x n-matrices

Let A= (ay), i=1,...,n, j=0,1,...,n, be a matrix over a division ring R.
Denote by A% the n x n-submatrix of 4 obtained from 4 by removing the kth
column and suppose that all 4%) are invertible. Choose an arbitrary se{l,...,n},
and denote

g (4) = (40| ;149 ;.

(s)

Proposition 4.2.1. The element q;;’(A) € R does not depend on s.

We denote the common value of q,(;) (A) by g;j(A) and call g;;(4) the left quasi-
Pliicker coordinates of the matrix 4.

Proof of Proposition 4.2.1. Considering the columns of the matrix 4 as n + 1 vectors
in the right n-dimensional space R" over R, we see that there exists a nonzero (n + 1)-
vector (x1, ..., X,¢1)€ R™! such that

X0
A =0
Xn
This means that
X0
alj
AU) X | =- X;
Ayj
Xn

Since all submatrices A%) are invertible, each x; is a nonzero element of R. Cramer’s
rule and transformations properties for quasideterminants imply that |A(f>|sixi =

—1A4® |- Therefore,

gy (4) = |4V 40]; = —xp! (4.2.1)

does not depend on s. [

Proposition 4.2.2. If g is an invertible n x n-matrix over R, then q;(gA) = q;(A).

X0
Proof. We have g4 | ... | =0. Therefore, g;;(94) = —x,-xj’1 =gq;(4). O
Xn
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In the commutative case, ¢;(A4) is a ratio of two Pliicker coordinates: ¢;(A4) =

N N — (J) (i)
pl.u.,jv....n/pl ..... Qoo det 4'//det A™.

Similarly, we define the right quasi-Pliicker coordinates r;(B) for (n+1) x n-
matrix B = (b;;). Denote by B%) the submatrix of B obtained from B by removing
the kth row. Suppose that all B%) are invertible, choose se{l,...,n}, and set

ry (B) = | B[ B9,

Proposition 4.2.3. (i) The element r,(;>(B) does not depend of s.

Denote the common value of elements r,(js)(B) by rij(B).
(i) If g is an invertible n x n-matrix over R, then r;(Bg) = r;(B).

In the commutative case, r;;(A4) = det B'Y) /det BY.

4.3. Definition of left quasi-Phicker coordinates. General case

Let A = (ay), p=1,....,k, g=1,...,n, k<n,be amatrix over a division ring R.
Choose 1<i,j, iy, ..., k1 <n such that i¢ I = {i\, ..., ix—1}. Let A(i,j, i1, ...,ix—1) be
the k& x (k 4 1)-submatrix of 4 with columns labeled by i,j, i, ..., 1.

Definition 4.3.1. Define left quasi-Pliicker coordinates qg(A) of the matrix A4 by the
formula

quJ(A) = qu(A(l7]a ila "wikfl))‘

By Proposition 4.2.1, left quasi-Pliicker coordinates are given by the formula
-1
ayidig, e Al ap;ay i cee Al

A, Ay, si akjakil Ay, 5

for an arbitrary s, 1 <s<k.
Proposition 4.3.2. If g is an invertible k x k-matrix over R, then qu(gA) = qé(A)
Proof. Use Proposition 4.2.2. [

In the commutative case q{i = pjr/pir, where p, . are the standard Plicker
coordinates.
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4.4. Identities for the left quasi-Phicker coordinates

The following properties of q,’l immediately follow from the definition.

() q{j does not depend on the ordering on elements in I;
(ii) ¢! = 0 for jeI;
(iii) ¢j; = 1 and gj; - ¢ = g

Theorem 4.4.1 (Skew-symmetry). Let N,|N| =k + 1, be a set of indices, i,j,meN.
Then

N\{i, ] N\{jm N\{m,i
IR M) M)

Theorem 4.4.2 (Pliicker relations). Fix M = (my,...,my_1),L = (/1,...,{k). Let
i¢ M. Then

L
doa g =1
JjeL

Examples. Suppose that k = 2.
(1) From Theorem 4.4.1 it follows that

ai"-a)t gl = -1,

In the commutative case, q{( - 2t

y - Pir
Pij = —PDji-
(2) From Theorem 4.4.2 it follows that for any i,j,/,m

so this identity follows from the skew-symmetry

4 m / i

In the commutative case this identity implies the standard identity (cf. (4.1.1))

Dij - Dem — Dit * Pjm ~+ Dim - Dtj = 0.

Remark. The products p,{//}pfim} (which in the commutative case are equal to - . )
L . i jm

can be viewed as noncommutative cross-ratios.

To prove Theorems 4.4.1 and 4.4.2 we need the following lemma. Let 4 =
aij), i=1,...;k, j=1,...,n,k<n, be a matrix over a division ring. Denote
S, Q=1 K i1 X b . divisi . D
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by A4;,. .
n X n-matrix

XY= <Al...k Ak-‘rl...n)’
0 En—k

where E,, is the identity matrix of order m.
Lemma 4.4.3. Let j<k<i. Ifq,ljfk(A) is defined, then |X|; is defined and

X1, = —g5 7k (). (4.4.1)

Proof. We must prove that

Xl =14, j u g |41kl (4.4.2)

provided the right-hand side is defined. We will prove this by induction on/ = n — k.
Let us assume that formula (2.2) holds for /=m and prove it for £/ =m+ 1.
Without loss of generality we can take j=1,i = k+ 1. By homological relations
(Theorem 1.4.3)

k+1,11—1 k+1.k
|X|k+1,1 = *|X€+1'1|s,k+1 ’ ‘X o +1|s1

for an appropriate 1 <s<k. Here

XkJrl.l o (AZ...k+l Ak+2...n>
0 En—k—l ’

YR <Al...k Ak+2...n>
0 E, k1
By the induction assumption

k+1, -1
XM et = =03l - [ A2 gt s

fe+ 1 _1
| XL = — A2 kkr2lggern - A1 kg

and [X|;,,, = —P/zgii]i(- 0
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To prove Theorem 4.4.2 we apply the second formula in Theorem 1.4.4 to the

matrix
e Ak Axsi.n
0 E, i

for M= (k+1,...,n) and any L such that |L|=n—k—1. By Lemma 4.4.3,
| X1,,,, = —¢""~*(4), | XMk, = —p)-"E(4), and Theorem 4.4.2 follows from
Theorem 1.4.4. O

To prove Theorem 4.4.1 it is sufficient to take the matrix X for n = k + 1 and use
homological relations.

Theorem 4.44. Let A= (a;), i=1,....k, j=1,....n, be a matrix with formal

entries and f'(a;;) an element of a free skew-field F generated by a;;. Let f be invariant
under the transformations

A—gA

for all invertible k x k-matrices g over F. Then f is a rational function of the quasi-
Pliicker coordinates.

Proof. Let b; = a; for i,j=1,...,k. Consider the matrix B = (b;). Then B! =
(|B|;l) Set C = (¢;) = B™'A4. Then

0 for j<k,
@ q}f”"'ﬂ'"k(A) for j>k.

By invariance, f is a rational expression of ¢; with j> k.

4.5. Right quasi-Plicker coordinates

Consider a matrix B = (b,y), p=1,...,n; ¢ =1, ...,k,k<n over a division ring
F. Choose 1<i,j,ij,...,Iik—1<n such that j¢ I = (ij,...,ix_1). Let B(i,j, i1, ...,0k_1)
be the (k + 1) x k-submatrix of B with rows labeled by i,/, i1, ..., k1.

Definition 4.5.1. Define right quasi-Pliicker coordinates ré.(B) of the matrix B by the
formula

r(B) = ry(B(i,j, i1, ..., ix-1)).
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By Proposition 4.2.3, right quasi-Pliicker coordinates are given by the formula

-1
i e b | | bi e i
P L T
ij -
bioiv o bkl bic o bk jt

for an arbitrary ¢, 1 <tr<k.

Proposition 4.5.2. r{j(Bg) = rlI](B) for each invertible k x k-matrix g over F.

4.6. Identities for the right quasi-Plicker coordinates

Identities for r{/ are dual to corresponding identities for the left quasi-Pliicker
coordinates ¢};. Namely,

() ré. does not depend on the ordering on elements of /;
(i) r}; =0 for iel;

(i) /=1 and ré . rfk =rl.

Theorem 4.6.1 (Skew-symmetry). Let N,|N| =k + 1, be a set of indices, i,j,meN.
Then

NGTY NG Ny

ij jm mi

Theorem 4.6.2 (Pliicker relations). Fix M = (my,...,my_1),L = (¢1,...,{k). Let
i¢ M. Then

L/} .M _
g rip =1.
jeL

4.7. Duality between quasi-Phicker coordinates

Let A= (a;), i=1,....k, j=1,...,n; and B=(by), r=1,...,n, s=1,...,
n — k. Suppose that 4B = 0. (This is equivalent to the statement that the subspace
generated by the rows of A4 in the left linear space F” is dual to the
subspace generated by the columns of B in the dual right linear space.)
Choose indices 1<i,j<n and a subset I<[l,n],|I| =k —1, such that i¢l. Set

J = ([1,n\)\{i,j}-



96 L Gelfand et al. | Advances in Mathematics 193 (2005) 56141

Theorem 4.7.1. We have
qy;(4) +r}(B) = 0.

4.8. Quasi-Piicker coordinates for k x n-matrices for different k
Let A= (a,), «=1,....;k, p=1,...,n, be a k x n-matrix over a noncommuta-
tive division ring R and A" a (k — 1) x n-submatrix of A. Choose 1<i,j,m,j, ...,

Jik—a<nsuch that i#m and i,m¢J = {1, ..., Jjk—2}-

Proposition 4.8.1. We have
Jou{m Joudi
aj(A4) = g5 " (A) + g, (A) - g P (A).

4.9. Applications of quasi-Pliicker coordinates

Row and column expansion of a quasideterminant. Some of the results obtained in
[GR,GR1,GR2] and partially presented in Section I can be rewritten in terms of
quasi-Pliicker coordinates.

Let A = (a;), i,j =1, ...,n, be a matrix over a division ring R. Choose 1 <a, f<n.
Using the notation of section I let B = A9 C = 4%} be the (n—1) x n and
n x (n— 1) submatrices of 4 obtained by deleting the «th row and the fith column
respectively. For j# f and i#a set

1..j..B..n
a5 = ¢ """ (B),

()}

Proposition 4.9.1. (i) [4|,5 = aup — >_; . 5 a5

(i) [Alyp = aup — D22 Taithip
provided the terms in the right-hand side of these formulas are defined.

Homological relations:

Proposition 4.9.2. In the previous notation,

(i) \A|;1 -|Al,, = —qj¢ (row relations),

(i) [4]; - |A|,;j1 = —ri (column relations).
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Corollary 4.9.3. In the previous notation, let (iy, ...,i), (J1, ...,j:) be sequences of
indices such that i#iy, i #ia, ..., I 1 Zlg; ] ZJ1,J1 ]2y orsji1 ZJi- Then

|A|i,Jr = iy -+ Giiy Giri \A|ij “Fip s - Vi
. a a
Example. For a matrix 4 = |~ “12') we have
ax  ax

]y, = ax - ay) - |A]y, - a5 - an,

Al = an - ay -an -ay) - |Aly - ay - an - a - an.

Matrix multiplication: The following formula was already used in the proof of
Theorem 4.4.4. Let A=(ay), i=1,...,n, j=1,....om, n<m, B= (a;), i=
L...,n, j=1,...,n, C=(aw), i=1,...;n, k=n+1,....m.

BlCc= (q}k‘“’:“‘"(A)), i=1,....,n, k=n+1,...,m.

Quasideterminant of the product: Let A = (a;), B = (b;), i,j =1, ...n be matrices
over a division ring R. Choose 1<k<n. Consider the (n— 1) x n-matrix 4’ =
(aj), i#k, and the n x (n — 1)-matrix B" = (by), j#k.

Proposition 4.9.5. We have

Bl - 4Bl - [ Al =1+ Z Fiko * Qaks
a#k

where ri, = r}(&“&“'”(B” ) are right quasi-Pliicker coordinates and q, = q;,;d“'” (A') are

left quasi-Pliicker coordinates, provided all expressions are defined.

The proof follows from the multiplicative property of quasideterminants and
Proposition 4.9.2.

Gauss decomposition: Consider a matrix 4 = (a;), i,j=1,...,n, over a division
ring R. Let Ay = (a;), i,j=k,...n, Bx = (ay), i=1,..n, j=k,...n, and C, =
(aj), i=k,...n, j=1,...n. These are submatrices of sizes (n—k+1)x
(n—k+1),nx(mn—k+1), and (n—k+1)xn respectively. Suppose that the
quasideterminants

yk:|Ak|kk7 k:17~--7n7

are defined and invertible in R.
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Theorem 4.9.6 (see Gelfand et al. [GR1,GR2]).

1 Xup 1 0 0

where
Xop = rg;,rl"'"(Bﬂ), I<a<f<n,

Zpa :qﬁ:l”'n(Cﬁ), I<a<f<n.

Similarly, let A% = (ay), i,j=1,....,k, BY = (a3), i=1,...,n, j=1, ...

C® = (ay), i=1,...,k, j=1,...,n. Suppose that the quasideterminants
y;(:|A(k)|kk7 kzla"w”a

are defined and invertible in R.

Theorem 4.9.7. We have

1 0 »' 0 1 Zop'

where

Bruhat decompositions: A generalization of Theorem 4.9.6 is given by the following

noncommutative analog of the Bruhat decomposition.

Definition: A square matrix P with entries 0 and 1 is called a permutation matrix if

in each row of P and in each column of P there is exactly one entry 1.

Theorem 4.9.8 (Bruhat decomposition). For an invertible matrix A over a division
ring there exist an upper-unipotent matrix X, a low-unipotent matrix Y, a diagonal

matrix D and a permutation matrix P such that

A =XPDY.
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Under the additional condition that P~'XP is an upper-unipotent matrix, the matrices
X,P,D,Y are uniquely determined by A.

Note that one can always find a decomposition 4 = XPDY that satisfies the
additional condition.

The entries of matrices X and Y can be written in terms of quasi-Pliicker
coordinates of submatrices of A. The entries of D can be expressed as
quasiminors of 4.

Examples. Let 4 = (3! 7*). If a» 70, then

A—(l a12a2‘21>(|A|11 0 )( 1 O)
N 0 1 0 ar 0521021 1)

If a, = 0 and the matrix A4 is invertible, then a1, #0. In this case,
(Clll alg)_<0 1)(&21 O >< 1 0>
ar 0/ \1 0J\0 ap/)\ajan 1)

An important example of quasi-Pliicker coordinates for the Vandermonde matrix
will be considered later.

4.10. Flag coordinates

Noncommutative flag coordinates were introduced in [GR1,GR2].

Let A= (ay), i=1,...,k, j=1,...,n, be a matrix over a division ring R. Let F,
be the subspace of the left vector space R" generated by the first p rows of A. Then
F=(FicFc- cF)is aflagin R". Put

Cl]jl aljk
ﬁl~--jk(f) =

iy - ki |y,

In [GRI1,GR2] the functions f; ;(F) were called the flag coordinates of F.
Transformations properties of quasideterminants imply that f; ; (F) does not

depend on the order of the indices j,, ..., jk-

Proposition 4.10.1 (see Gelfand et al. [GR1,GR2]). The functions f;, ;,(F) do not
change under left multiplication of A by an upper unipotent matrix.
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Theorem 4.10.2 (see Gelfand et al. [GR1,GR2]). The functions f;, _; (F) possess the
following relations:

ﬁljli}mjk (‘7:)f/'1j3mjk (-7:)_1 = _fj2/'1~~~jk (f)J_f/‘z/'szk (-7:)_17
f./‘lm./’k(]:)fjln‘]-k—l(7)71 +ﬁ2~~~./k.il (f)fizmjk(f)il

+ +fj/<jlm_/'kfl(j:)f_{/‘kil»u_ikfz (}_)71 =0.

Example. Let 4 = (%" “2 “3) Then fi,(F)a;! = —fu(F)ap and fio(F)aj! +

) dpp a3

f3(Fag + fs1(F)ay = 0.

It is easy to see that

a1 (A) = S is (F) i i, (F).

Theorems 4.4.1 and 4.4.2 can be deduced from Theorem 4.10.2.

5. Factorization of Vandermonde quasideterminants and the Viéte theorem

In this section we study factorizations of quasideterminants of Vandermonde
matrices. It is well known that factorizations of Vandermonde determinants over
commutative rings play a fundamental role in mathematics. Factorizations of
noncommutative Vandermonde quasideterminants turn out to be equally important.
This is why we devote a separate section to these results. We also use these
factorizations to prove the noncommutative Vieté theorem, which was formulated in
[GR3,GR4] using our noncommutative form of the Sylvester identity. In Sections 6
and 7 we will give other applications of factorizations of quasideterminants of
Vandermonde matrices. A good exposition of decompositions of Vandermonde
quasideterminants is given in [Os].

5.1. Vandermonde quasideterminants

Let xi,x3,...,xx be a set of elements of a division ring R. For k>1 the
quasideterminant
X! X!
V(X1y ey Xp) =
X1 Xk
1 L 1y

is called the Vandermonde quasideterminant.
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We say that a sequence of elements xi,...,x,€R is independent if all
quasideterminants V(xy,...,xx), k=2,...,n, are defined and invertible. For
independent sequences xi, ..., x, and xi, ..., X,_1,z set

yi=Xx1, ZzZ1 =2,
Yk = V(X],...7Xk)XkV(X17...,Xk)_l, k>27

-1
ze = VX1, oy Xke1,2)2V (X1, ooy Xk1,2) ", k22,
In the commutative case y; = x; and zx =z for k=1, ... n.
5.2. Bezout and Viete decompositions of the Vandermonde quasideterminants

Theorem 5.2.1 (Bezout decomposition of the Vandermonde quasideterminant).

Suppose that sequences X1, ...,X, and Xy, ..., X,_1,z are independent. Then
V(xts ooy X0, 2) = (20 = Yu) (Zn-1 = Yu—1) - (20 = 21)- (5.2.1)
Note that if z commutes with x;, i =1, ...,n, then

Vi(xt,....Xn,2) = (2 — yu)(z2 — yu_1) -+ (z — »1).

Theorem 5.2.2 (Viéte decomposition of the Vandermonde quasideterminant). For

an independent sequence xi, ..., X,z we have
VX1, .oy Xp,2) = 2" + a2 "+ a1z + ay, (5.2.2)
where
ar = (—1)F Z ViYie, V- (5.2.3)

I<ii<ib<--<ix<n

In particular
ar ==+ ),

ap = Z YiYi,

I<i<j<n

ap = (=1)"yp-y1.
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5.3. Proof of Theorem 5.2.2

By induction on n we show that Theorem 5.2.2 follows from Theorem 5.2.1. For
n =1 one has V(x;,z) = z — x; and formulas (5.2.1) and (5.2.2) hold. Suppose that
these formulas hold for m = n — 1. By Theorem 5.2.1

V(X1 .oy Xn,2) = (20 — y) VX1, ooty Xno1, 2)

=(V(x1y ey Xn—1,2) - 2) — (W - VI(x1, oty Xn1, 2))-
By induction,
V(Xl, ...,Xn,l,Z) =1 +b12n_2 + o+ by,

where
by =—(1+ - +yu1),

bn—l - (_l)nyn—l et V1.

Therefore,

V(xla ...7x,,,z) ="+ (bl _yn)Z’Fl + (bZ _ynbl)zni2 + o _ynbn

=" 4+a 2+ ta,,

where ay, ...,a, are given by (5.2.3). O

5.4. Division lemma

To prove Theorem 5.2.1 we need the following result.

Lemma 5.4.1. We have

V(xl, ...,xn,z) = V()fz, ...,fn,f)(z—xl),



L Gelfand et al. | Advances in Mathematics 193 (2005) 56141 103

where

)Ack:(xk—xl)xk(xk—xl)_l, k=2,...,l’l

Z=(z—x1)z(z—x1)"".

Proof. By definition,

n n n

xl x2 e zZ
xlil—] xg—l Zn—l
V(X1 .oy Xp,2) =
X1 X2 z
1 1

1,n+1

Multiply the kth row by x; from the left and subtract it from the (k — 1)th row for

k=2, ...,n. Since the quasideterminant does not change, we have
n n—1 n n—1
0 X;—x1x3 Z" — X!
0 xi7!— x;xi72 2=l oy 2
V(X1y oy Xp,2) =1 - : :
0 X2 — X1 Z— X1
1 1 Ln+l
0 (xa—x)xab o (2= xp) !
0 x—x Z— X
1 1 1

1,n+1

Applying to the last quasideterminant Sylvester’s theorem with the element of index
(n+1,1) as the pivot we obtain

(xa = x)x87 b o (z—xp)z"!
V(X1yeoiy X, 2) =
X2 — X1 =X 1n
According to elementary properties of quasideterminants, multiplying the kth
column on the right by (x4 — xl)_1 for k=1,...,n— 1 and the last column by
(z—x;)"!" results in the multiplication of the value of the quasideterminant on the
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right by (z — x;)~". Therefore,

V(X1yeey Xn, 2)
(o —x)X (s —x1) e (E=x)2 Nz —x) 7!
= : : (z—x1)
1 1 in
23—1 En—l
=| : (z=x1)=V (X2, ..., X0, 2) - (z — x1).
1 L,

5.5. Proof of Theorem 5.2.1

We proceed by induction on n. By Lemma 5.4.1, Theorem 5.2.1 is valid for n = 2.
Also by Lemma 5.4.1,

V(x1, ooy Xn,2) = V(X2, o0y X0, 2) (2 — x1). (5.5.1)
Suppose that our theorem is valid for m = n — 1. Then
V(X2 s X0, 2) = (2 — yi') - (25 = 05),

where

Z;( =V (%, ...,fk_l,/Z\)/Z\Vil(fz, s Xkm1,2),

V= V(R o, BTV oy o Fe) for k=3, ....n.

It suffices to show that zj =z, and y} =y for k=2,...,n. For k=2 this is
obvious. By Lemma 5.4.1,

V(.;C\z, ...,56\](,1,2) = V(Xl, ...,kal,Z)(Z —xl)fl,
and by definition Z = (z — x})z(z — xl)_l. So,
e ={V(x1, ..., xk-1,2) (2 — xl)fl}(z —x1)z(z — x1)71

x{(z=x)V ' (x1,...,xk1,2)} =z for k=3,....n.
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Similarly, y; = yi for k =3, ...,n and from (5.5.1) we have

VX1, ooy Xn,2) = (2o = yu) (22 = 32)(z1 = 1) O

5.6. Another expression for the coefficients in Viete decomposition

Another expression for the coefficients «y,...,a, in Viéte decomposition of
V(xy,...,Xn,z) can be obtained from Proposition 1.5.1.

Theorem 5.6.1 (Gelfand et al. [GKLLRT]). We have
V(X17 "‘axl’HZ) =z + Cl]Zni1 + - +ay,

where for k=1,....n

X X
1 n n—1 n—1 |1
X X
n—k+1 n—k+1
x e x
_ |7 n o=k n—k
e P X/ X! . (5.6.1)
1 n
1 |
1 1 In

From Theorem 5.6.1 we will get the Bezout and Viéte formulas expressing the
coefficients of the equation

PHa e +a,=0 (5.6.2)
as polynomials in xi, ..., x, conjugated by Vandermonde determinants.
5.7. The Bezout and Viete theorems

Recall that the set of elements xi, ..., x, of a ring with unit is independent if all
Vandermonde quasideterminants V' (x;, ..., x; ) for k=2 are defined and invertible.

Lemma 5.7.1. Suppose that xi, ...,x, is an independent set of roots of Eq. (5.6.2).
Then the coefficients ay, ...,a, can be written in the form (5.6.1).

Proof. Consider the system of right linear equations
X} +a1x§”1 4+ tapxi+a, =0, i=1,...,n

in variables ay, ...,a, and use Cramer’s rule. [
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Theorem 5.7.2 (Noncommutative Bezout theorem). Let xy, ..., x, be an independent
set of roots of equation (5.6.2). In notations of Theorem 5.2.1,

Z" +a12’171 + - ta = (Zn _yn)"'(zl _yl)'

Proof. Use Lemma 5.7.1, Theorems 5.6.1 and 5.2.1. O

Theorem 5.7.2 (Noncommutative Viéte theorem, see Gelfand and Retakh
[GR3]). Let xi,...,x, be an independent set of roots of Eq. (5.6.2). Then the
coefficients ay, ..., a, of the equation are given by formulas (5.2.3).

Proof. Use Lemma 3.2.1, Theorems 3.1.4 and 3.1.2. O

A different proof of this theorem, using differential operators, appeared in [EGR].
Another noncommutative version of the Viéte Theorem, based on notions of traces
and determinants, was given by Connes and Schwarz in [CS].

6. Noncommutative symmetric functions

General theory of noncommutative symmetric functions was developed in the paper
[GKLLRT]. In fact, [GKLLRT] was devoted to the study of different systems of
multiplicative and linear generators in a free algebra Sym generated by a system of
noncommuting variables A;, i=1,2,... . In [GKLLRT] these variables were called
elementary symmetric functions, but the theory was developed independently of the
origin of A;. Thus, in [GKLLRT] only a formal theory of noncommutative symmetric
functions ““without variables” was introduced. The real theory of noncommutative
symmetric functions got “the right to exist” only after the corresponding variables
were introduced in [GR3,GR4] following the Vieté theorem and the basic theorem in
the theory of noncommutative symmetric functions has been proved in [Wi].

In this section we apply the general theory to noncommutative symmetric
functions generated by specific 4;. As in the commutative case, they depend of a set
of roots of a polynomial equation.

6.1. Formal noncommutative symmetric functions

This theory was started in [GKLLRT] and developed in several papers (see, for
example, [KLT,LST]). An extensive review was given in [Thi]. Here we just recall
some basic constructions.

The algebra Sym is a free graded associative algebra over a field F generated by an
infinite sequence of variables (Ay), deg Ax = k, k> 1. The homogeneous component
of degree n is denoted by Sym,. The direct sum @,>;Sym, is denoted by Sym_.
Initially the A;’s were regarded as the elementary symmetric functions of some
virtual set of arguments. A natural set of arguments was found later, see [GR3,GR4].
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Recall some properties of the algebra Sym, of symmetric commutative poly-
nomials in variables ¢, ..., #y. The algebra Symy has a natural grading, degt; = 1,
i=1,...,N, and is freely generated by the elementary symmetric functions
ei(N)=>"ti, e2(N) = Zi<j titj, ...,en(N) = tity...ty. (There are other natural
sets of generators in Symy). Setting /y = 0 one gets a canonical epimorphism of
graded algebras py : Symy —Symy_;.

The projective limit of graded algebras Sym, with respect to the system {py} is
called the algebra Sym of symmetric functions in infinite set of variables ¢, #5, ... (see
[Mac]). One can view the algebra Sym as a free commutative algebra generated by
formal series e; =) ; #;, &2 = ij ity oo e =y 1 <o <igly ...l . . The series
ei 1s called the kth elementary symmetric function in 1,12, ... .

In Sym, there are also other standard sets of generators (see, e.g., [Mac]). The most
common among them are the complete symmetric functions (%), and the power
symmetric functions (p ), ;. To express them in terms of (ex) one can use generating
functions. Namely, set g = /9 = 1. Let t be a formal variable. Set A(t) = >, - M,

o(t) =D k=0 ¥(1) = Zl@ll’klk*l- Then

ik’ ..

d
W(x) = +logal(z).

Define the canonical epimorphism 7 : Sym— Sym by setting n(Ax) = ex, k=1. Let
Zn be an ideal Sym generated by all A, k> N. The epimorphism = induces the
canonical epimorphism 7y of Sym onto the algebra Sym, of symmetric polynomials
in commuting variables ¢, ..., ¢y, N>1. Note that ny(Zy) = 0.

Noncommutative analogs of functions (/) and (px) can be constructed in the
following way. Let 7 be a formal variable commuting with all A;. Set 49 =1 and
define the generating series

Ar) = Z At

k=0

Definition 6.1.1. The complete homogeneous symmetric functions are the coeffi-
cients S; in the generating series

o(t) = Z Sptk = A(—=1)7". (6.1.1a)

k=0

The power sums symmetric functions of the first kind ¥y are the coefficients ¥ in
the generating series

Z ¥t = g(z)! %a(r). (6.1.1b)

k=1
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The power sums symmetric functions of the second kind &; are defined by

d
ot = loga(n). (6.1.1¢c)
; dt

By using formulas (6.1.1a)-(6.1.1c) one can prove that my(Sk) is the kth
complete symmetric function and 7ny(¥x) = ny(Px) is the kth power symmetric
function in N commuting variables. Note that in the right-hand sides of (6.1.1b)
and (6.1.1¢) different noncommutative analogs of the logarithmic derivative of ¢(¢)
are used.

Definition 6.1.1 leads to the following quasideterminantal formulas.

Proposition 6.1.2. For every k=1, one has

Ay Ay - Apy
I A - Apn Ap
Se=(=D"0 1 o Ay A,
0 0 1 Ay
S 1 0 o 0
S> S1 1 -0
Ae=(=D"sy s S .. 0],
Skl Sk—1 Sk - 5
Yy ¥ - Wi P
-1 ¥ - Wi Y
0 0 —n+1 Tl
v, 1 0 0
v, v, 2 0

VYier Yeo - ¥
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A 24, - (k— 1)/1/671 kA
Ay - Ag— Ay
Ye=(-D""0 1 A3 A= |,
0 0 1 A
S 1 0 e 0
w, — 2S5 Y 1 - 0
Si—1 Sk - Si

Each of the four sequences (Ayx), (Sk), (¥x), and (Py) is a set of generators in Sym.
Therefore, each of the four sets of products Fj, ... Fi,, ij, ..., iy =1, where F;_equals
to A, S, Vi, or @iy, is a linear basis in Sym, . Linear relations between these bases
were given in [GKLLRT].

Another important example of a linear basis in Sym_ is given by ribbon Schur
Sfunctions.

6.2. Ribbon Schur functions

Commutative ribbon Schur functions were defined by MacMahon [M]. Here we
follow his ideas.
Let I = (if, ...,i), i1, ...,k =1, be an ordered set.

Definition 6.2.1 (Gelfand et al. [GKLLRT]). The ribbon Schur function R; is
defined by the formula

Sii Sitir Sitintin 0 |Siitetin
S Sivis v Skt
R, = (_1)1»71
! 0 1 S, o Shggi
0 0 0 Si,

Definition 6.2.1 allows us to express R;’s as polynomials in S;’s. To do this we
need the following ordering of sets of integers.

Let 7= (i, ...,i) and J = (ji, ...,Js). We say that I<J if i =j, +jp + - +Jjy,
I =Ju+1+ - +Jny eoesis = Ji_4+1 + -+ +Js. For example, if 1< (12), then I = (12)
or I = (3). If I<(321), then [ is equal to one of the sets (321), (51), (33), or (6).

For I = (i1, ...,i,) set [(I) =r and ST = S, S;,...S;

A
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Proposition 6.2.2 (Gelfand et al. [GKLLRT, p. 254]).

R, = Z(_I)I(J)fl(l)sl.
I<J

Example. Rj>; =S¢ — S_qz, — 85185 + 815,85.

Definition 6.1.2 implies that R; = S, for I = {m} and R; = Ay for i} = --- =iy =
1. For each N the homomorphism 7y maps R; to the corresponding MacMahon
ribbon Schur function.

In [GKLLRT] similar formulas expressing R; as quasideterminants of matrices
with entries Ay, as well as linear relations with different bases in Sym_ defined in
Section 6.1, are given.

Natural bases in algebra Sym of commutative symmetric functions are indexed by
weakly decreasing (or, weakly increasing) finite sequences of integers. Examples are
products of elementary symmetric functions e;, ...e; where i >i--- =i, and Schur
functions s, where A = (iy, ..., i ). The following theorem gives a natural basis in the
algebra of noncommutative symmetric functions. Elements of this basis are indexed
by all finite sequences of integers.

Theorem 6.2.3 (Gelfand et al. [GKLLRT]). The ribbon Schur functions Ry form a
linear basis in Sym.

Let = : Sym— Sym be the canonical morphism. Then it is known (see [M]) that the
commutative ribbon Schur functions 7(R;) are not linearly independent. For
example, commutative ribbon Schur functions defined by sets (ij) and (i) coincide.
This means that the kernel Ker x is nontrivial.

Remark. In the commutative case, ribbon Schur functions n(R;) with weakly
decreasing I constitute a basis in the space of symmetric functions. However, this
basis is not frequently used.

The description of the kernel Ker x in terms of ribbon Schur functions is given by
the following theorem.
For an ordered set I is denote by u(I) the corresponding unordered set.

Theorem 6.2.4. The kernel of 7 is linearly generated by the elements

A,ﬁ,:Z Ry — Z Ry

<J <y
Sfor all J, J' such that u(J) = u(J').

Example. 1. Let J = (12), J' = (21). Then 4,5 = (Ri2 + R3) — (Ro1 + R3) = Ryp —
R21 and 7'C(R12) = 7'E(R21).
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2. Let J= (123), J = (213). Then Ay p = (R123 + R33 + Ri5 + R6) — (R213 +
R334+ Rys + Rg) = Rios + Ris — Ry;s — Ry This  shows, in  particular, that
7(Ri23) — m(R213) = n(Ros) — m(Ry5) #0.

The homological relations for quasideterminants imply the multiplication rule for
the ribbon Schur functions. Let I = (i1, ..., i), J = (ji, ....Js), ip=1, jy=1for all p, q.
Set I+J = (i1, ...,br—1,0r +J1,j2, -, Js) and I-J = (i1, ... ip, J1y -eesjis)-

The following picture illustrates this definition (and explains the origin of the
name “‘ribbon Schur functions”). To each ordered set I= {ij,i,...,ix} we can
associate a ribbon, i.e., a sequence of square cells on the square rules paper
starting at the square (0,0) and going right and down, with #; squares in the first
column, i, squares in the second column, and so on, see Fig. 1 for the ribbons
corresponding to I =(2,1,3) and J=(3,1,2). Then the construction of ribbons
I+ J and I - J has a simple geometric meaning as shown in Fig. 2 for I = (2,1, 3) and
J=(31,2).

Theorem 6.2.5 (Gelfand et al. [GKLLRT]). We have
RiR; = Ry + Ryy.
The commutative version of this multiplication rule is due to MacMahon.

Naturality of ribbon Schur functions R; can be explained in terms of the following
construction.

I1=(2,1,3) J=(3,1,2)
Fig. 1.

1+J=(2,1,6,1,2) IJ=(2,1,3,3,1,2)
Fig. 2.
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6.3. Algebras with two multiplications

The relations between the functions A and the functions S; can be illuminated by
noting that the ideal Sym__ has two natural associative multiplications *; and *,. In
terms of ribbon Schur functions it can be given as Ry x| Ry = Ry and Ry %y Ry =
R, ;. We formalize this notion as follows.

Definition 6.3.1. A linear space 4 with two bilinear products o; and o, is called a
biassociative algebra with products o; and o if

(aeib)oje = avi(bojc)

for all a,b,ce 4 and all i,je{1,2}.

Note that if the products o; and o, in a biassociative algebra 4 have a common
identity element 1 (i.e., if 1o,a = ao;1 = a for all ae A and i = 1,2, then

ao1h = (aoy1)o1b = aoy(lo1h) = acyb

for all a,be A and so o] = o,.

Note also that if 4 is a biassociative algebra with two products o; and o,
then for r,seF one can define the linear combination o,; =ro; + 5o by the
formula

acysb = r(ao1b) + s(aob), a,beA.

Then A is a biassociative algebra with the products ., and o, for each
r,s,t,ue k.

Jacobson’s discussion of isotopy and homotopy of Jordan algebras (see [Ja2, p.
56,ff]) shows that if 4 is an associative algebra with the product - and o, for ae 4 is
defined by the formula

boyc = boaoc
a )

then A is a biassociative algebra with the products - and o,.

We now endow the ideal Sym, = Sym with the structure of a biassociative algebra
in two different ways. Recall that the nontrivial monomials (4;, ... 4;) as well as the
nontrivial monomials (S, ....S;) form linear bases in Sym + .

Definition 6.3.2. Define the linear map *; : Sym,_ ® Sym,_ —Sym_ by

(A Ay) w1 (A Ay) = Ay Ay Aiy Ay o Ay
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and the linear map *,: Sym, ® Sym_ — Sym__ by

(S,‘] S,}) *9 (SJ ij) = S,’l "'Si/~71Si,A+j1‘S/2 Sj .

s

Write ab = a o b for a,beSym . Then it is clear that ax; (bx;c) = (ax; b) xj ¢
for all a,b,ceSym, and i,j=0,1 or i,j=0,2. Thus we have the following
result.

Lemma 6.3.3. Sym_ is a biassociative algebra with products *y and * and also a
biassociative algebra with products xo and *;.

In fact, x¢, *; and %, are closely related.
The following Lemma is just a restatement of Theorem 6.2.5.

Lemma 6.3.4. x) = *| + *,.
Proof. We have
-1
A=) = (1 +Z(—1)’71,»t’> =1+> > (DYt
i>0 Jj>0 i+ +i=j

Since A; = Ay xy Ay *1 --- x; A, where there are i— 1 occurrences of x;, the

coefficient at #/ in A(—7)"" is

k
(71) Al *u] Al *uz *llj,l A]7
uy,...,ui-1 €{0,1}

where k is the number of u, equal to 1.
Since 1 4+ 3. 8;/ = A(—1)"" we have

Sj = Z (_l)kAl *ul Al *uz *uj,l Al-
uy,...uj €{0,1}

Therefore S,' *( Sj — Si *1 Sj = Si(*O — *l)Sj = Si+j = Si *9 Sj and k) = *p — %1, as
required. [

Now let U be the two-dimensional vector space with basis {ug,u;} and

FQUY =Y F(UY,

k>0
the (graded) free associative algebra on U, with the homogeneous components

F{UY, = U%k,
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We use the products *; and *; to define two isomorphisms, ¢, and ¢,, of F{U ) to
Sym_ . Namely, for a basis element u;, ...u; e F{U ) set

(,251 LU ...ui,|—>/11 *i) /11 Ky e Xy /11 e(Sym+)I+1

and

Gyttt ot Ay iy Ay xgy o Ay e(Symy ),
where j, =0 if i; = 0 and j, = 2 if i, = 1. Note that ¢, and ¢, shift degree.

Define the involution 6 of U by 0(uy) = up and 0(u;) = up — u;. Then 0 extends to
an automorphism @ of F{U) and the restriction @ of this automorphism to
F{UY, is the kth tensor power of 0. Clearly ¢,0 = ¢, and so we recover
Proposition 4.13 in [GKLLRT], which describes, in terms of tensor powers, the
relation between the bases of Sym_ consisting of nontrivial monomials in 4; and of
nontrivial monomials in S;.

Similarly, taking the identity

n—1
a7 ()" > (1) A a4+ by =0,
k=1

valid in any associative algebra, setting @ = up — u;, b = u;, and applying ¢,, we
obtain the identity

n

0=>" (1) ASus

k=0

between the elementary and complete symmetric functions (Proposition 3.3 in
[GKLLRT]). Using Proposition 6.1.2, one can express these identities in terms of
quasideterminants.

6.4. Quasi-Schur functions

Quasi-Schur functions were defined in [GKLLRT]. They are elements not of Sym
but of the free-skew field generated by Sy, S>... . Let I = (i1, ..., k).

Definition 6.4.1. Define S; by the formula

i Sea

Sl'lfl Sig e SiA»+k—2

v

S; = (—D! (6.4.1)

Si—k+1 Sp—k2 0 Sy
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If I=(ij,...,i) is a partition, i.e., a weakly increasing sequence of nonnegative
sequences, the element S; is called a quasi-Schur function. For an arbitrary set I, S;
is called a generalized quasi-Schur function.

In particular, S{k} = S) and §{1k} = Ay, where 1¥ = (1...1) with k occurrences

of 1.
Definition 6.4.1 is a noncommutative analog of Jacobi—Trudi formula. In the

commutative case, S; for a partition [ is the ratio of two Schur functions S;/Sj;,

where J = (i; — 1, ..., ix_; — 1). It shows that in general S cannot be represented as a
polynomial in Sj.

Remark. The homological relations and the transformation properties of quaside-
terminants imply that any generalized quasi-Schur function S; can be expressed as a
rational function in the quasi-Schur functions. For example,

v Sy |8 Ss| S, S3 |8, v
S42 — _‘ 4 - _ 4 _ ‘ 3 S;lSQ _ S33S§1S2.
S3 Sz S2 S3 Sz S3

6.5. Symmetric functions in noncommutative variables

We fix n independent indeterminants xp, x», ..., X, and construct new variables
V1, ..., yn Which are rational functions in xi, ..., x, as follows. Recall that in 5.1 we
defined the Vandermonde quasideterminant

k-1 k—1
Xl :L.k
V(x, oyxg) = | K2 xk2
Set
Y1 = Xi,
—1 -
Y2 =V(x,x)0V (0, x) " = (a0 —x)xbn—x),
-1
yn: V(Xh...,X;z)an(xl,...7xn) .
In the commutative case x; = y;, i = 1, ..., n. In the noncommutative case x; and y;

are obviously different.
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Remark. Consider the free skew-field R generated by Xxi,...,x,. Define on R
differential operators 0; by formula 0;x; =J; and the Leibniz rule 0;(fg) =

0i(f)g+f0i(g), for i=1,...,n. It easy to see that 9;y;#9;. However, denote
0=20,+ -+ +0,. Then

and

Elementary symmetric functions:
Definition 6.5.1. The functions

Ay(X1, X)) =Y+ va 4+ v,

/12(X], ...,Xn) = Z Yiis

i<j

An(xh '-'7xn) =VYn--- )1

are called elementary symmetric functions in xi, ..., x,.

In the commutative case these functions are the standard elementary symmetric
functions of xi,...,x,. By the noncommutative Viéte theorem (Theorem 5.7.1),

Ai(x1, oy xy) = (—l)iai, i=1,...,n, where x, ..., x, are the roots of the equation

-1
Xn+a]xn + .- +an—1x+al1:0'

This implies

Proposition 6.5.2. The functions A;(xi, ...,x,) are symmetric in Xy, ..., X,.
Denote by Sym,, the subalgebra of the algebra of rational functions in xi, ..., x,
generated by Ag(xi,...,x,), k=1, ...,n. Define the surjective homomorphism
¢ : Sym—Sym, (6.5.1)

by setting ¢(Ax) = Ax(x1, ..., Xn).

Theorem 6.5.3. The kernel of ¢ is generated by Ay for k>n.
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Remark. The order of yi, ..., y, is essential in the definition of A;(xi, ..., x,), i =
1, ...,n. For example, A,(x1,x;) = ypy1 is symmetric in xi, x,, whereas the product
y1y2 is not symmetric. To see this set 4 = x; — x;. The symmetricity in x;, x, of the
product y;y, would imply that x;4% = A%x.
Complete symmetric functions:

Definition 6.5.4. The functions

Sic(X1y eeeyXn) = Vij Vi, k=1,2.3,...

are called complete symmetric functions in xi, ..., x,.

In the commutative case these functions are the standard complete symmetric
functions in xi, ..., X,.

Let ¢ be a formal variable commuting with x;, i = 1, ..., n. Define the generating
functions

) =14+ A(xp, ooy xp)t + - 4+ Ap(x1, ooy X0) 1"
o(y) =1+ Si(xr, .., x,)f = A=)

Proposition 6.5.5. We have

a(H)A(—1t) = 1.
In the commutative case, Si(xy,...,X,) are the standard complete symmetric
functions.
Proposition 6.5.6. The functions Si(x1, ...,X,) are symmetric in xi, ..., Xx,.

Proof. Use Proposition 6.5.5, Theorem 6.5.3 and Proposition 6.1.2. [

Remark. The order of elements y, in the definition of Sy is essential: S>(x1,x;) =
¥+ y1y2 + y5 is symmetric in X, ..., x, whereas y? + y,p1 + )3 is not symmetric
(cf. the remark after Theorem 6.5.3).

Ribbon Schur functions: We define “ribbon Schur functions with arguments”
R;(x1, ..., x,) similarly to Definition 6.2.1, replacing R; with R;(xy, ..., x,) and Si
with Si(x1, ..., x,). Evidently, ribbon Schur functions R;(xi, ...,x,) are symmetric
in xy, ..., x, and form a linear basis in Sym,,.
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Proposition 6.5.7. We have R;(xi,...,x,) = ¢(R;), where ¢ is defined by
Sformula (6.5.1).

To express R;(xy, ..., X,) as a sum of monomials in yy, ..., y, we need some notation.
Let w=a,...a; be a word in ordered letters a; <--- <a,. An integer m is called a
descent of w if 1<m<k —1 and i,,>1i,,;1. Let M(w) be the set of all descents of w.

Let J = (Ji, ...,Jjx) be a set of positive integers.

Theorem 6.5.8.

RJ(x17--~7xn):Zyil"'yi”ﬂ (652)

where the sum is taken over all words w =y, ...y; such that M(w)={j,ji +
IR I o -3 R /g 3

The proof of the theorem was essentially given in [GKLLRT, Section VII].

6.6. Main theorem for noncommutative symmetric functions

In the commutative case the classical main theorem of the theory of symmetric
functions says that every symmetric polynomial of n variables is a polynomial of
(elementary) symmetric functions of these variables. Its analogue for a noncommu-
tative case is given by the following theorem. Denote Ag(xy, ..., x,) as Ax(X), k =
I,...,n.

Recall that in the previous section we defined the elements y; by the formulas

-1
yi=x1, =V, oxe)xdVixy, .o,x,)” fork=2,...,n.

Theorem 6.6.1 (Wilson [Wi]). Let a polynomial P(yy, ...,y,) over Q be symmetric in
X1y eers Xn. Then P(y1, ..., yn) = Q(A1(X), ..., A,(X)), where Q is a noncommutative
polynomial over Q.

Remark. Recall that P(yy, ...,y,) is a polynomial in y; and not in x;. We can express
this by saying that in the natural variables x;, noncommutative symmetric
polynomials are not polynomials but rational functions.

Corollary 6.6.2. A polynomial P(yi, ...,y,) with coefficients in Q is symmetric in
X1, ...y Xn if and only if P(yi, ..., ), viewed as a rational function of xi, ..., X,, is a
linear combination of Ry(xy, ..., Xy).

6.7. Quasi-Plicker coordinates of Vandermonde matrices and symmetric functions

Here we study right quasi-Pliicker coordinates rﬁ}""’i"*‘(Vn), where V, = (x;)7

ieZ, j=1,...,n, is the Vandermonde matrix, x;, j=1,...,n are noncommuting
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variables. The matrix V), has n columns and infinitely many rows. The following
proposition shows the importance of such coordinates.

Proposition 6.7.1. We have

rgi}é:iil,:_Z](Vn):Sk(xlv"'axn)7 k:071727"'7

Pt Ly = (D) A (e, xa), k=01

Examples.
-1
k+1 k+1 oy
X T Xy | L2 -
Se(x1,x2) =| ! : 1 = (5 =X —x) ™
1 1

=5+ 05 i v

where y; = x1, y2 = (x2 — x1)x2(x2 — x1)71;

-1

2 2 o
X €T X X2 _
Ai(x1,x2) = ! 2 : - :(xﬁ—xf)(xz—xl) ! =1+,
1 1 1 1
2 2 - xoox |7
Ar(x1,x0) = =T [ 72 1 = (3 —xix2)(1 —x7'x) " = oy
X1 X2

Remark. Formulas for S; in Proposition 6.7.1 are valid for all keZ.

An important “‘periodicity”’ property of quasi-Pliicker coordinates of Vander-
monde matrices is given by the following proposition.

Proposition 6.7.2. For any ke Z we have

i V) = ),

Proposition 6.7.1 can be generalized as follows. Recall that in 6.4 we defined
generalized quasi-Schur functions. Let 1= {ij, iz, ..., i}
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Proposition 6.7.3. Let I={i, iy, ...,in} and iy=ir= =i, Set J={0,1,...,
n—m—1ln—m+iy,..,n—2+1i,_1}. Then

ri—l-«—il ,n—m( Vn) - SI'

7. Universal quadratic algebras associated with pseudo-roots of noncommutative
polynomials and noncommutative differential polynomials

7.1. Pseudo-roots of noncommutative polynomials

During the last years the authors introduced and studied universal algebras
associated with pseudo-roots of noncommutative polynomials. The results appeared
in [GRW,GGR,GGRSW].

Let C be an algebra with unit and P(¢) € C[¢] be a polynomial (where 7 is a formal
variable commuting with elements of C). We say that an element ce C is a pseudo-
root of P(t) if there exist polynomials L.(t), R.(¢) e C[¢] such that P(¢) = L.(7)(t —
O)R.(2). If P(t) = apt" + a1 "' + -+ + a,_1t + a, and c is a pseudo-root of P(¢) with
R.(?) =1, then

a" +a "+ - apic+a, =0,
i.e., cis a root of the polynomial P(x) = agx" + a;x"~' + --- + a,_1x + a, (where x is

a noncommuting variable). Our theory shows that the analysis of noncommutative
polynomials is impossible without studying pseudo-roots.

Let X1, ..., X, be roots of a generic monic polynomial P(x) = x" + a;x"' + --- +
a, over an algebra C. There are two important classical problems: (a) to express
the coefficients ay, ..., a, via the roots, (b) to determine all factorizations of P(x),
or P(1).

When C is a division ring, the first problem was solved in [GR3,GR4] using the
theory of quasideterminants; the solution is presented in Section 5. Let V' (x;,, ..., x;,)
be the Vandermonde quasideterminant corresponding to the sequence x;,, ..., X;,.
For an ordering {7, ..., i,} of {1, ...,n}, we constructed the elements

Xg.i, = Xips

x{il,ib...,i/‘»,]}aik = V(xiw "'axik)xik V(X,’l, "'7xl'k)_la k= 27 ey
in C such that for every m =1, ...,n,
(_l)mam = Z YirVia ooV (711)
jl >A/‘2 > "'.//11

where y1 = Xi\, Yk = Xgip, i vio K=2,...,0
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It is surprising that the left-hand side in formula (7.1.1) does not depend on the
ordering of {1, ...,n} whereas the right-hand side a priori does depend on it. The
independence of the right-hand side in (7.1.1) on the ordering of {1, ..., n} was a key
point in the theory of noncommutative symmetric functions developed in
[GR3,GR4], see Section 6 of the present article.
has an interesting structure. As we have already

The element Xy, ivr Lt
mentioned, it is symmetric in Xx;,...,X; ,. Next, it is a rational function in
Xi, ..., X, containing, in the general case, kK — 1 inversions. In other words,

X{ir,...i_1 ) 18 @ rational expression of height k — 1.
Set Ay = {iy, ..., ix_1} for k =2, ..., n. Recall that formulas (7.1.1) are equivalent
to the decomposition

P(Z) = (t - xAnsin)(t - xAnfl-l}zf])"'(t - xil)' (712)

This formula shows that the elements x4; are pseudo-roots of P(¢), and in the
general case the polynomial P(¢) has at least n2"~! different pseudo-roots. We study all
these pseudo-roots together by constructing the universal algebra of pseudo-roots Q,,.

7.2. Universal algebra of pseudo-roots

It is easy to see that the elements x4, i¢ A, satisfy the following simple relations:

xAu{i},j"'xA,[:xAu{j},i“_xAﬁjy (721&)

XAO{i},j " XA, = Xa0{j}i " XA, (7.2.1b)

forall A<{l,...,n}, i,j¢ A.

In order to avoid inversions and to make our construction independent of the
algebra C, we define the universal algebra of pseudo-roots Q,, over a field F to be the
algebra with generators z4 ;, A< {1, ...,n}, i¢ A, and relations corresponding to 7.2.1
(with x replaced by z).

Each algebra Q, has a natural derivation 9: Q,— Q,, 9(z4;) = 1 and a natural
anti-involution 0: 0, — Q,, 0(z4;) = z¢,; where C = {1, ..., n}\A\{i}.

The algebra contains, as a subalgebra, the free associative algebra generated by the
zj =zy; i =1,...,n. The algebra Q, also admits a natural homomorphism «, to
the skew-field generated by elements zy, ...,z,. Namely, let 4 = {i|, ..., ik }. Set

-1

k k k k
Zi Zi 25 Zi Zi =
k-1 k—1 k-1 k—1 k-1 k—1
on(za4) = | 2, Zi Zi Zi| 2 Zj, z
1 1 1 1 1 1

Conjecture 7.2.1. The homomorphism o,, is a monomorphism.
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We can prove this conjecture for n = 2, 3.
The algebra Q, admits a natural commutative specialization n, : Q, — F|[t1, ..., t,]
given by

TEn(ZA.’,') =t, = 17 R (X (722)

In particular, for each i¢ A4, the image of z4; — z; under 7, equals zero.
To study the kernel of m, further, it is convenient to define, for each pair
A,B<={l,...,n}, with An B = 0 the element z4 g€ Q, by the recurrence formula

299 =0,
ZAU{i}.B — Z4.Bu{iy = Z4.8 for i¢ A, B.

One can easily see that when B contains more than one element, the element z,4 g is
“invisible” in the commutative case, i.e., m,(z45) = 0.
In [GRW] it was proved that

AT E = Z Zp,cu{i}-
0#CcA4

The terms on the right-hand side in (7.2.2) measure the “‘noncommutativity” of z4 ;.
Moreover, in a sense, the “degree of noncommutativity” carried by zj 5 depends on
the size of B: the greater |B|, the more ‘“‘noncommutative” the element by zj p is.

7.3. Bases in the algebra Q,

The algebra Q, has a natural graded structure Q, = Z/;o 0,1 where O, is the
span of all products of / generators z ;.

One can see that elements z,y and, similarly, the elements z,,, for all
A<={1,...,n}, A#0, constitute a basis in the subspace of Q,;. These elements
satisfy simple quadratic relations.

Our study of Q, relies on the construction of a basis in Q,, which is a hard
combinatorial problem.

For A< {1, ...,n} let min(A4) denote the smallest element of A. Then set A = 4,

AV = 4\{min(4)}, 4D = (4D Set 1y = zy 4.
Theorem 7.3.1 (see Gelfand et al. [GRW]). The set of all monomials

VA(lo)rAgl) "'VAE"'"rA(ZO)rAE” ...VA(zjz) "'rAfo)rAEI) ...VA§/,>,

where Ay, ...,A1={l,...,n} and for each 1<i<l—1, either A1 EA; or
|Ai1| #|Ai| —Jji — 1, is a basis in Q.
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Remark. It would be interesting to study in details combinatorial properties
of the basis and to give constructions of similar bases in @, using different
techniques including noncommutative Grdébner bases and Bergman’s Diamond
lemma.

7.4. Algebra of noncommutative symmetric polynomials as a subalgebra in Q,

For each ordering I = (i, ...,i,) of {1, ...,n}, there is a natural free subalgebra
On1< O, generated by {zy;, ;19| 1<k<n}. Using the basis theorem in [GRW], we
can describe arbitrary intersections of subalgebras Q, ;. In particular, we can prove
the following theorem. Let S, be a subalgebra in O, generated by all coefficients a,,
(see formula (7.1.1)). One can identify S, with the algebra Sym, of noncommutative
symmetric functions in xi, ..., X,.

Theorem 7.4.1 (see Gelfand et al. [GRWY])). The intersection of all subalgebras Q,
coincides with algebra S,,.

This is a purely noncommutative phenomenon: under the commutative
specialization m,, all algebras Q,; map to the algebra of all polynomials and
algebra S, maps to the algebra of symmetric functions.

7.5. The dual algebra Q)

The definition of the dual quadratic algebra and of Koszul quadratic algebras can
be found, e.g., in [L&].

Recall, that the quadratic algebra @, has a natural graded structure Q, =
> i=0 Oni Where Q,; is the span of all products of i generators. As usual, we denote
the Hilbert series of Q, by H(Qy, 1) = Y5, dim(Q,,)7".

In [GGRSW] we computed the Hilbert series of Q, and of its dual quadratic
algebra Q!. In particular, the following result was proved.

Theorem 7.5.1. We have

l -1
H(Qn,7) ST —o"
I 1 2 n
H( =1

In particular, since H(Q, 1) is a polynomial in 7, the dual algebra Q' is finite

dimensional. Similarly to Q,, it also has a rich and interesting structure.
Theorem 7.5.1 shows that

1

H(Qu,t)-H(Q,,—1) = 1.
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This also follows from the koszulity of Q,, which was recently proved by Serconek
and Wilson [SW].

7.6. Quotient algebras of Q,

There are at least two reasons to study quotient algebras of Q,. The
noncommutative nature of @, can be studied by looking at quotients of Q, by
ideals generated by some zy 4. These quotients are “more commutative” than Q,.
For example, the quotient of Q, by the ideal generated by all zy 4 with [4]>2 is
isomorphic to the algebra of commutative polynomials in » variables.

To consider more refined cases, we need to turn to a ‘“‘noncommutative
combinatorial topology”. In this approach the algebra Q, corresponds to an n-
simplex 4,, and we consider quotients of @, by ideals generated by some zj 4
corresponding to subcomplexes of 4,. In [GGR] we described generators and
relations for those quotients. Special attention was given to the quotients
of O, corresponding to one-dimensional subcomplexes of 4, (they are close to
algebras of commutative polynomials). However, we need to study other
quotient algebras of this type and to be able to “glue” together such quotient
algebras. This will lead to a construction of a “‘noncommutative combinatorial
topology™.

Another interesting class of quotients of Q, consists of algebras corresponding to
special types of polynomials (such as x" = 0 or polynomials with multiple roots).
Here is an example.

Example. Let F be a field. We consider quotients of the F-algebra Q,. The algebra
0, itself is generated by zj, za, z12, z21. It corresponds to a polynomial P(f) =
P—pt+qwithp=zi+zi0=z20+221, ¢ = 21221 = 22122

There is an “invisible element™ zy |, = z1» — 22 = 22| — z1. This element satisfies
the relation 20’12(21 — Zz) = Z1Zy — Z7Z].

There are three quotient algebras corresponding to special cases of P(z).

(i) The algebra corresponding to the polynomial #* is Qa2/(p,q). This algebra is
isomorphic to F<{zy,z,) /(z},23).

(ii) The algebra corresponding to a polynomial with multiple roots is Q»/(z; — z2).
It is isomorphic to the free algebra with generators z; and z; ,.

(iii) The algebra Q,/(zy;») is isomorphic to the algebra of commutative
polynomials in two variables.

Another class of quotient algebras of 0, was introduced in [GGR].
7.7. Quadratic algebras associated with differential noncommutative polynomials

In [GRW] we also constructed, similarly to algebras Q,, the universal algebras of
pseudo-roots of noncommutative differential polynomials.
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Let C be an algebra over a field F. Recall that a derivation D of C is an F-linear
map D: C— C such that D(ab) = D(a)b + aD(b). Any element ae C acts on C by
the multiplication from the left. Tt is obvious that the commutator [D,a] = Da — aD
acts on C as the left multiplication by D(a). Also, any polynomial P = P(D) =
ayD" +a D" + .- +a,, a;eC fori=0,1,...,n acts on C by the formula

P(D)(¢) = aoD"(¢) + a1 D" (§) + -+ + au-1D(¢) + angp.

We say that an element ce C is a pseudo-root of P(D) if there exist polynomials
L.(D) and R.(D) with coefficients in C such that P(D) = L.(D)(D — ¢)R.(D)
(taking into account the commutation rule 7.7.1). We say that ¢ is a root of P(D)
if R.(D)=1.

Suppose that ay = 1 and the differential polynomial P(D) has n different roots
fi, ..., fue C. Following [EGR], for any ordering (iy, ...,i,) of {l,...,n}, in [GRW]
we constructed, for a generic P, pseudo-roots f; i, ..., fi....i,_ ., such that

P(D) = (D —fir,..iprin) -+ (D = fir.s)(D = fiy)-

For k=2, ...,n the element f;

(i1, eeyig—1)-
Set fy; =fi. It was proved in [GRW] that for any A<{l,...,n} such that

|4|<n — 1, and for any i,j¢ 4 we have

i does not depend on the order of elements

Javij+fai=faoji T4 (7.7.1a)

Javijfai—D(fui) =favjifa,j— D(fa,))- (7.7.1b)

Based on these formulas one can define universal algebras DQ, of pseudo-roots
of noncommutative differential polynomials. They are defined by elements f,; for
i¢ A satisfying relations 7.7.1. The theory of algebras DQ, seems to be useful in
the study of noncommutative integrable systems.

8. Noncommutative traces, determinants and eigenvalues

In this section we discuss noncommutative traces, determinants and eigenvalues.
Our approach to noncommutative determinants in this section is different from our
approach described in Section 3.

Classical (commutative) determinants play a key role in representation theory.
Frobenius developed his theory of group characters by studying factorizations of group
determinants (see [L]). Therefore, one cannot start a noncommutative representation
theory without looking at possible definition of noncommutative determinants and
traces. The definition of a noncommutative determinant given in this section is different
from the definition given in Section 3. However, for matrices over commutative
algebras, quantum and Capelli matrices both approach give the same results.
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8.1. Determinants and cyclic vectors

Let R be an algebra with unit and 4 : R” — R™ a linear map of right vector spaces,
A vector ve R is an A-cyclic vector if v, Av, ..., A" 'v is a basis in R” regarded as a
right R-module. In this case there exist A;(v,4)eR, i =1, ...,m, such that

(=1)"0A (v, A) + (= 1) (A0) A1 (0, A) + - — (A" T0) A1 (v, 4) + A™0 = 0.

Definition 8.1.1. We call A,,(v,A) the determinant of (v,A) and A;(v,A) the
trace of (v, A).

We may express A;(v,4)eR, i=1,...,m, as quasi-Pliicker coordinates of the
m X (m+ 1) matrix with columns v, Av, ..., A"v (following [GR4]).

In the basis v, Av, ..., A"~ the map 4 is represented by the Frobenius matrix 4,
with the last column equal to ((—1)"A,,(v, A), ..., —A1(v,A))". From Theorem 3.1.3
it follows that if determinants of A, are defined, then they coincide up to a sign with
Am(V, A). This justifies our definition.

Also, when R is a commutative algebra, A,,(v,4) is the determinant of 4 and
Ay (v, A) is the trace of 4.

When R is noncommutative, the expressions A;(v,4)e R, i=1,...,m, depend on
vector v. However, they provide some information about A. For example, the
following statement is true.

Proposition 8.1.2. If the determinant A,,(v, A) equals zero, then the map A is not
invertible.

Definition 8.1.1 of noncommutative determinants and traces was essentially used
in [GKLLRT] for linear maps given by matrices 4 = (a;), i,j =1, ...,m and unit
vectors e5, s = 1, ...,m. In this case A;(e;, 4) are quasi-Plicker coordinates of the
corresponding Krylov matrix K (4). Here (see [G]) K (A4) is the matrix (b;),
i=mm—1,...,1,0, j=1,...,m, where b is the (sj)-entry of A'.

Example. Let 4 = (a;) be an m x m-matrix and v = ¢; = (1,0, ...,O)T. Denote by

agc) the corresponding entries of AX. Then

(m) () (m)

aq ap I P
_ m—1 m—1 m—1 m—1
A'"(U’A) - (_1) a(ll ) (1(12 ) a(lm )
ap apn Aim

For m =2 the “noncommutative trace” A, equals a; + apana; and the
12
“noncommutative determinant” A, equals alzazzajzlan — dppdy).
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It was shown in [GKLLRT] that if 4 is a quantum matrix, then 4,, equals det, 4
and A is a Capelli matrix, then 4,, equals the Capelli determinant.

A construction of a noncommutative determinant and a noncommutative trace in
terms of cyclic vectors in a special case was used in [Ki].

One can view the elements A;(v,4) as elementary symmetric functions of
“eigenvalues” of A4.

Following Section 6 we introduce complete symmetric functions S;(v,4), i =
1,2, ..., of “eigenvalues™ of A as follows. Let ¢ be a formal commutative variable. Set
M) =14+ A(v,A)t+ -+ + Ap(v, A)f" and define the elements S;(v,4) by the
formulas

o(t) =1+ St =i(-n",

k>0

Recall that in Section 6 we introduced ribbon Schur functions and that R+ is the
ribbon Schur function corresponding to the hook with k vertical and / horizontal
boxes. In particular, A; = R, S; = R;.

Let A: R"— R" be a linear map of right linear spaces.

Proposition 8.1.3. For k>0:

AerkU = (—l)nl_lUle—l(k+1) + (_1)'71_2(AU(leiz(k?F])) + N + (AmilU)Rk_’_]).

Let A4 = diag(xy,...,x,). In the general case for a cyclic vector one can take
v=(1,...,1)". In this case, the following two results hold.

Proposition 8.1.4. For k=1,....m

Ak (Uv A)
-1
m—k m—1 m—k—1 m—k+1 . em
1 xn Soooxn 1 xn xn T,
1 . m—k—1 m—k+1 m
1 Xi xy' 1 X X X

Proposition 8.1.5. For any k>0

pm—1 m—2 m+k—1
1 'I’m 1 xm xm
Sk (l), A) =
| xrlﬂfl | x,1n72 x;ln+k—l

Note that formulas for S; look somewhat simpler than formulas for Ay.
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8.2. Noncommutative determinants and noncommutative eigenvalues

One can also express A;(v,4) e R in terms of left eigenvalues of A.
Let a linear map 4: R™— R™ of the right vector spaces is represented by the
matrix (a;).

Definition 8.2.1. A nonzero row-vector u = (uy, ..., u,) is a left eigenvector of A4 if
there exists A€ R such that ud = Au.

We call 1 a left eigenvalue of A corresponding to vector u. Note, that 1 is the
eigenvalue of A corresponding to a left eigenvector u then, for each o€ R, alo~! is the
eigenvalue corresponding to the left eigenvector au. Indeed, (au)A = ado™! (o).

For a row vector u = (uy, ...,uy) and a column vector v = (vy, ..., vm)T denote by
{u,v) the inner product {u,v) = ujv; + ...UpUy-

Proposition 8.2.2. Suppose that u = (uy, ..., u,) is a left eigenvector of A with the
eigenvalue 1, v = (v, ...,vm)T is a cyclic vector of A, and {u,v)y = 1. Then the
eigenvalue A satisfies the equation

(1) A0, A) + (1) Ay (0, A) + - — A" A (0, A) + 2" = 0. (8.2.1)

Eq. (8.2.1) and the corresponding Viéte theorem (see Section 3) show that if the
map A4:R"—R" has left eigenvectors u', ..., with corresponding eigenvalues
M, ..oy dom such that {u',v)> =1 for i=1,...,m and any submatrix of the
Vandermonde matrix ()jl) is invertible, then all A;(v, 4) can be expressed in terms
of A1,..., 4, as “noncommutative elementary symmetric functions” by formulas
similar to those in Definition 6.5.1.

8.3. Multiplicativity of determinants

In the commutative case the multiplicativity of determinants and the additivity of
traces are related to computations of determinants and traces with diagonal block-
matrices. In the noncommutative case we suggest to consider the following
construction.

Let R be an algebra with a unit. Let 4: R” —» R™ and D : R" - R" be linear maps of
right vector spaces, ve R™ an A-cyclic vector and we R" a D-cyclic vector.

There exist A;(w,D)eR, i =1, ...,n, such that

(=1)"vA,(w, D) + (=1)"" (DW) Ay_i (W, D) 4 --- — (D" '0) A1 (w, D) + D"w = 0.

Denote also by S;(w,D), i=1,2,..., the corresponding complete symmetric
functions.
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The matrix C = ({ ) acts on R™". Suppose that the vector u = (") is a cyclic
vector for matrix C. We want to express A;(u,C), i=1,...,m+n in terms of
Aj(v,4), Sk(v,4), Ay(w, D), and S,(w, D).
Denote, for brevity, A;(v, 4) = A;, Sk(v, A) = Sk, A,(w, D) = A,/, Sy(w,D) =S,/
For two sets of variables o = {a;,as,...,} and = {by,bs,...,} introduce the
following (m + n) x (m + n)-matrix M (m,n;a, f):

1 al a2 e e e an171 e am+ﬂ71
0 l ay ar e e Ap—1 e am+n72
0 0 0 v eer e 1 A
1 by by - bu_y e e e by
0 1 by by o+ o e by
0O 0 0 - 1 by e e by

Proposition 8.3.1. For any j=2,...,m + n we have

|M(m,n; o, B)|,; = —|M(m,n; 0, B)],,11 ;-

The elements S;(u,C), i=1,2,..., can be computed as follows. Denote by
Ni(m,n;a, ) the matrix obtained from M by replacing its last column by the
following column:

(am+n+k—l s Amtntk—25 «+ o5 Antk—1, bn1+n+k—1 5 b;7z+n+k—27 ceey bm+k—1 ) T-
Set o = {81, 80, ..., (=1)FSy, ..}, of = (=8}, 8, ..., (=S, )
Theorem 8.3.2. For k =1,2, ... we have

-1
Sk (u7 C) = ‘M(Wl, n; o, a/)|1m+n . |Nk (m’ n; o, a,)|lm+n'

Example. Form=3,n=2and k=1,2,... . Then
Sk(u, C) =

B Y A VI

0 1 -5 Sh —83
Do o0 1 =S5 S,

1 =S, 8, -8y S

0 1 =S 8 -8

=S S =5 Siqx
I =S S =S
0 1 =S S
S s -sy Sy,

! ! !
1 =878 —Si 15

S = O O =

15

For n =1 denote A;(D) = S;(D) by 2.
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Proposition 8.3.3. If' n =1, then for k = 1,2, ... we have
Sik(u, C) = Si(v, 4) + Si_1(v, A)| M (m, n; 0, o) 2 Mmoo

—1
|1m+n Ilm+n+1-

Note that
-1
Am+1 (uv C) = |M(ma n; o, a/)‘ln1+n/V|M(m7 n;a, a/)|1m+n+1Am(U7 A)?
i.e. the “determinant” of the diagonal matrix equals the product of two

“determinants”.

9. Some applications

In this section we mainly present some results from [GR1,GR2,GR4].

9.1. Continued fractions and almost triangular matrices

Consider an infinite matrix 4 over a skew-field:

an di2 a1z o diptce

—1 ay an - ay-
A fr—

0 —1 a3z - ay

0 0 -1

It was pointed out in [GR1,GR2] that the quasideterminant |A4|,, can be written as
a generalized continued fraction

1
|A]; = an + E aj, -
Jil ay, + ij;él,jl Dy g
Let
apy ap o diy
_1 a» ary,
An = 0 -1 aspn
0 -1 a,

The following proposition was formulated in [GR1,GR2].
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Proposition 9.1.1. |4,|,, = P,O,', where

P, = > A1jy @y 11, jy Gy 41, s -+ Djg+ L (9.1.1)
I<ji<-<jk<n
On = > @,y 11, jy Wy 41, 3 Djg+ L (9.1.2)

2 i< <Jk<n
Proof. From the homological relations one has
Inj-1 _ 1-1
|A”|11|An |21 - _|Aﬂ|ln|An ‘211 :

We will apply formula (1.2.2) to compute |4,]|,,, |[4L!],,, and |4)7],,. It is easy to see
that [4!"|,; = —1. To compute the two other quasideterminants, we have to invert

triangular matrices. Setting P, = |4,|;, and Q, = |A4}'],, we arrive at formulas
(9.1.1), 9.1.2). O

Remark. In the commutative case Proposition 9.1.1 is well known. In this case
P, = |4y, = (—1)"det 4, and Q, = (—1)" " det 4.

Formulas (9.1.1), (9.1.2) imply the following result (see [GR1,GR2]).

Corollary 9.1.2. The polynomials Py for k=0 and Qy for k=1 are related by the

Sformulas
k—1
Py = Z Py, Po=1, (9.1.3)
s=0
k—1
Q=Y Owgik, Q=1 (9.1.4)
s=1

Corollary 9.1.3. Suppose that for any i#j and any p,q the elements of the matrix A
satisfy the conditions

Ajjlpg = dpqdij,

ajiai — a;aj; = ajj, 1 <l<]<n
Then

P, = |An|1n = uynlp—1p—1-.-d11- (915)

The proof follows from (9.1.3).
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Corollary 9.1.4 (Gelfand and Retakh [GR1,GR2]). For the Jacoby matrix

aj 1 0
A= -1 a 1
0 —1 as
we have
A =da + )
| |11 a2+a3+1.‘.
and
Py=1, Pi=ai, Pr=Prax+ P, fork=2;
O1=1, O=a, Or=0kiak+ Ok, fork=3.
In this case Py is a polynomial in ay, ...,a; and Qy is a polynomial in ay, ..., a.

9.2. Continued fractions and formal series

In the notation of the previous subsection the infinite continued fraction |4|;; may
be written as a ratio of formal series in the letters a; and a;;'. Namely, set

= E -1 -1
Poo = ay Aji41jy -+ - Ay +1rAy - oon - Ay
I<ji<jpeor <je<r—1
r=1,2,3,...

11 11 P
=1+ anayay; +aizas; ay ay; +ananay ay ay; + o,
and

— g Z -1
Ow =ap + 2 jy+1jy - D 1ryy * ooe 2 Ay
2 <o <je<r—1
r=23...

=)+ andyy @) ay) + audy dy dy ayy + e
Since each monomial appears in these sums at most once, these are well-defined
formal series.
The following theorem was proved in [PPR]. Another proof was given in [GR4].
Theorem 9.2.1. We have

\A\ll =Py - Q;cl-
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Proof. Set b; = a,-jaj;l and consider matrix B = (b;), i,j=1,2,3, ... . According to

a property of quasideterminants |A|,; = |BJ|,,a11. Applying the noncommutative
Sylvester theorem to B with matrix (b;), i,j>3, as the pivot, we have

-1
Bl;y = 1+ |B*|,,|B" |, a7
Therefore
- - 1yl
]y = (an|B" [yar! + B 1501 ) (|1 B |han,!) (9.2.1)
By [GKLLRT], Proposition 2.4, the first factor in (9.2.1) equals P, , and the second

equals 07!, O

9.3. Noncommutative Rogers—Ramanujan continued fraction

The following application of Theorem 9.2.1 to Rogers—Ramanujan continued
fraction was given in [PPR]. Consider a continued fraction with two formal variables
x and y:

1
A(x,y) =
%) =13 —,
Ix oy
It is easy to see that
1 X !
1 X 0
-y 1 x 0 IR R
A(x,y) = - 1ox S0 o1 gty
1
-1 -1
0 . y 1

Theorem 9.2.1 implies the following result.
Corollary 9.3.1. A(x,y) =P- Q7' where Q = yPy~! and

P=1+ Z yxy TR x Ly Tk xy ot

k>1

Following [PPR], let us assume that xy = gyx, where ¢ commutes with x and y.
Set z = yx. Then Corollary 9.3.1 implies Rogers—Ramanujan continued fraction
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identity
k(41
| 14> s ng
AXy) === £k
e 1+ Zk>1 9.0 7%

1+---

9.4. Quasideterminants and characteristic functions of graphs

Let 4= (a;), i,j=1,...,n, where a; are formal noncommuting variables. Fix
p,qe{l,...,n}and aset J<{l,....p,....,n} x{l,...,q,...,n} such that |J| =n — 1
and both projections of J onto {1, ...,p,...,n} and {1, ...,4, ...,n} are surjective.
Introduce new variables by, k,/=1,...,n, by the formulas by = ay; for (I,k)¢J,

by = ay! for (I,k)eJ. Let F; be a ring of formal series in variables by;.

Proposition 9.4.1. The quasideterminant |A|; is defined in the ring Fy and is given by
the formula

Al = by = > (=1)bii biyi, ... by (9.4.1)
The sum is taken over all sequences iy, ..., i such that i #i,j for k=1, ...,s.

Proposition 9.4.2. The inverse to |A\U is also defined in the ring Fy and is given by the
following formula:

Al = by = > (=1)bii biyiy .. by (9.4.2)
The sum is taken over all sequences iy, ..., I,.

All relations between quasideterminants, including the Sylvester identity, can be
deduced from formulas (9.4.1) and (9.4.2).

Formulas (9.4.1) and (9.4.2) can be interpreted in terms graph theory. Let I, be a
complete oriented graph with vertices 1,...,n and edges e, where k, /=1, ... n.
Introduce a bijective correspondence between edges of the graph and elements by,
such that e — by;.

Then there exist a bijective correspondence between the monomials b, b;,j, ... b;;
and the paths from the vertex i to the vertex j.

9.5. Factorizations of differential operators and noncommutative variation of constants

Let R be an algebra with a derivation D : R— R. Denote Dg by ¢’ and D¥g by g(¥).
Let P(D) = D"+ a;D" ! + --- + a, be a differential operator acting on R and ¢;,
i=1,...,n, be solutions of the homogeneous equation P(D)¢$ =0, i.e., P(D)p; =0
for all i.
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For k=1, ...,n consider the Wronski matrix
d)gkfl) ¢§{k71)
Wi =
b1 Py

and suppose that any square submatrix of W, is invertible.
Set wx = |W|,, and by = wy/ Wk k=1,

Theorem 9.5.1 (Etingof et al. [EGR]).
P(D) = (D —b,)(D —by_1)...(D — by).
Corollary 9.5.2. Operator P(D) can be factorized as
P(D) = (wy-D-w, YWy -D-w ') o(wy - D-wih).

One can also construct solutions of the nonhomogeneous equation P(D)y = f
f€eR, starting with solutions ¢y, ..., ¢, of the homogeneous equation. Suppose
that any square submatrix of W, is invertible and that there exist elements u; € R,
j=1,...,n, such that

= W[ (9.5.1)
Theorem 9.5.3. The element y = Z’:{ ¢;u; satisfies the equation
(Dn +621D1171 4o +an)l,b :f

In the case where R is the algebra of complex valued functions g(x), xeR the
solution y of the nonhomogeneous equation is given by the classical formula

det W
Z 9 det W

where matrix W; is obtained from the Wronski matrix W by replacing the entries in
the jth column of W by f,0,...,0. It is easy to see that formula (9.5.1) and Theorem
9.5.3 imply formula (9.5.2).
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9.6. Iterated Darboux transformations

Let R be a differential algebra with a derivation D: R— R and ¢€R be an
invertible element. Recall that we denote D(g) = ¢’ and D*(g) = ¢g¥). In particular
DO(g) =g.

For feR define D(¢;f) =f — ¢'¢"'f. Following [Mat] we call D(¢;f) the
Darboux transformation of f defined by ¢. This definition was known for matrix
functions f(x) and D = 0y. Note that

f/ ¢/ .
S0

D(¢:f) =

Let ¢y, ...,¢;. Define the iterated Darboux transformation D(¢y, ...¢;f) by
induction as follows. For k=1, it coincides with the Darboux transfor-
mation defined above. Assume that k>1. The expression D(¢y, ..., d;;f) 1s
defined if D(¢py, ..., ¢y f) is defined and invertible and D(¢;f) is defined. In
this case,

D(¢g, - b1:f) = D(D(¢y, - 23/ ); D(by5f))-

Theorem 9.6.1. If all square submatrices of matrix (¢;”), i=1,... k; j=k—
1, ...,0 are invertible, then

£8) o .. ¢l<€k>
D(¢k?7¢lvf): oo |t
A ¢ Py

The proof follows from the noncommutative Sylvester theorem (Theorem 1.5.2).

Corollary 9.6.2. The iterated Darboux transformation D(¢y, ... ¢ f) is symmetric in

(/)la "'a(pk'

The proof follows from the symmetricity of quasideterminants.

Corollary 9.6.3 (Matveev [Mat]). In commutative case, the iterated Darboux
transformation is a ratio of two Wronskians,

D(bgs -, O15f) —%
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9.7. Noncommutative Sylvester—Toda lattices

Let R be a division ring with a derivation D:R—R. Let ¢eR and the
quasideterminants

o Do - D¢
Dy D D'

Tu(d)=| ... (9.7.1)
Dn_l(f) D”(]’) D2n—2¢

are defined and invertible. Set ¢, = ¢ and ¢, = T,(¢), n =2,3, ... .
Theorem 9.7.1. Elements ¢, n = 1,2, ..., satisfy the following system of equations:
D((Dg1)d1 ") = oy,
D((D$,)$,") = Guri ' — Gupy’y, n=2.

If R is commutative, the determinants of matrices used in formulas (9.7.1) satisfy a
nonlinear system of differential equations. In the modern literature this system is
called the Toda lattice (see, for example, [Ok] but in fact it was discovered by
Sylvester in 1862 [Syl]) and, probably, should be called the Sylvester—Toda
lattice. Our system can be viewed as a noncommutative generalization of the
Sylvester—Toda lattice. Theorem 9.7.1 appeared in [GR1,GR2] and was generalized
in [RS] and [EGR].

The following theorem is a noncommutative analog of the famous Hirota
identities.

Theorem 9.7.2. For n=2
Tu1(9) = Tu(D*9) = (D) - (T,1(D*¢) ™" = T(¢) ™)™ - T(Dh).
The proof follows from the Theorem 1.5.2.

9.8. Noncommutative orthogonal polynomials

The results described in this subsection were obtained in [GKLLRT]. Let
S0, S1,5,, ... be elements of a skew-field R and x be a commutative variable. Define a



138 L Gelfand et al. | Advances in Mathematics 193 (2005) 56141

sequence of elements P;(x)eR[x], i=0,1, ..., by setting Py = Sy and

Sn T S2n—l CE’”
P, (x) — | St - S X (981)
Sy o S, 1

for n=1. We suppose here that quasideterminants in (9.8.1) are defined. Proposition
1.5.1 implies that P,(x) is a polynomial of degree n. If R is commutative, then
P,, n=0, are orthogonal polynomials defined by the moments S, n>0. We are going
to show that if R is a free division ring generated by S,,, n>0, then polynomials P, are
indeed orthogonal with regard a natural noncommutative R-valued product on R][x].

Let R be a free skew-field generated by c¢,, n=0. Define on R a natural anti-
involution a a* by setting ¢ = ¢, for all n. Extend the involution to R[x] by setting
(3" aix')" = 3" a;x". Define the R-valued inner product on R[x] by setting

<Z (,Z[Xi, Z bjxj> = Z a,~c,~+,-b]’-‘.
Theorem 9.8.1. For n#m we have

<Pn(x),Pm(x)> =0.

The three term relation for noncommutative orthogonal polynomials P,(x) can be
expressed in terms of noncommutative quasi-Schur functions AS:,-I,_.__,,-N defined in 6.4.
We will use a notation S,-Nf]j ifiy = --- =iy_; and iy = and write S if iy = - = iy.

Theorem 9.8.2. The noncommutative orthogonal polynomials P,(x) satisfy the three
term recurrence relation

Py (x) = (X = Spugeny St + S;‘ )n,lns“(nl_,),,)P,, () + s Sy Pac1 (x) = 0

n—1

for n=1.
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