
http://www.elsevier.com/locate/aim
Advances in Mathematics 193 (2005) 56–141

Quasideterminants

Israel Gelfand,a Sergei Gelfand,b,� Vladimir Retakh,a,1 and
Robert Lee Wilsona

a Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA
b American Mathematical Society, 201, Charles Street, Providence, RI 02904-2213, USA

Received 8 September 2003; accepted 11 March 2004

Available online 19 July 2004

Communicated by P. Etingof

To the memory of Gian-Carlo Rota

Abstract

The determinant is a main organizing tool in commutative linear algebra. In this review we

present a theory of the quasideterminants defined for matrices over a division ring.
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0. Introduction

The ubiquitous notion of a determinant has a long history, both visible and
invisible. The determinant has been a main organizing tool in commutative linear
algebra and we cannot accept the point of view of a modern textbook [FIS] that
‘‘determinants y are of much less importance than they once were’’.

Attempts to define a determinant for matrices with noncommutative entries
started more than 150 years ago and include several great names. For many years the
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most famous examples of matrices of noncommutative objects were quaternionic
matrices and block matrices. It is not surprising that the first noncommutative
determinants or similar notions were defined for such structures.

Cayley [C] was the first to define, in 1845, the determinant of a matrix with

noncommutative entries. He mentioned that for a quaternionic matrix A ¼ a11

a21

a12

a22

� �
the expressions a11a22 � a12a21 and a11a22 � a21a12 are different and suggested
choosing one of them as the determinant of the matrix A: The analog of this
construction for 3 � 3-matrices was also proposed in [C] and later developed in [J].
This ‘‘naive’’ approach is now known to work for quantum determinants and some
other cases. Different forms of quaternionic determinants were considered later by
Study [St], Moore [Mo] and Dyson [Dy].

There were no direct ‘‘determinantal’’ attacks on block matrices (excluding evident
cases) but important insights were given by Frobenius [Fr] and Schur [Schur].

A theory of determinants of matrices with general noncommutative entries
was in fact originated by Wedderburn in 1913. In [W] he constructed a theory
of noncommutative continued fractions or, in modern terms, ‘‘determinants’’ of
noncommutative Jacobi matrices.

In 1926–1928 Heyting [H] and Richardson [Ri,Ri1] suggested analogs of a
determinant for matrices over division rings. Heyting is known as a founder of
intuitionist logic and Richardson as a creator of the Littlewood–Richardson rule.
Heyting tried to construct a noncommutative projective geometry. As a computa-
tional tool, he introduced the ‘‘designant’’ of a noncommutative matrix. The

designant of a 2 � 2-matrix A ¼ ðaijÞ is defined as a11 � a12a�1
22 a21: The designant of

an n � n-matrix is defined then by a complicated inductive procedure. The inductive
procedures used by Richardson were even more complicated. It is important to
mention that determinants of Heyting and Richardson in general are rational
functions (and not polynomials!) in matrix entries.

The idea to have nonpolynomial determinants was strongly criticized by Ore [O].
In [O] he defined a polynomial determinant for matrices over an important class of
noncommutative rings (now known as Ore rings).

The most famous and widely used noncommutative determinant is the Dieudonne
determinant. It was defined for matrices over a division ring R by Dieudonne in 1943
[D]. His idea was to consider determinants with values in R�=½R�;R�� where R� is the
monoid of invertible elements in R: The properties of Dieudonne determinants are
close to those of commutative ones, but, evidently, Dieudonne determinants cannot
be used for solving systems of linear equations.

An interesting generalization of commutative determinants belongs to Berezin
[B,Le]. He defined determinants for matrices over so-called super-commutative
algebras. In particular, Berezin also understood that it is impossible to avoid rational
functions in matrix entries in his definition.

Other famous examples of noncommutative determinants developed for different
special cases are: quantum determinants [KS,Ma], Capelli determinants [We],
determinants introduced by Cartier–Foata [CF,F] and Birman–Williams [BW], etc.
As we explain later (using another universal notion, that of quasideterminants) these
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determinants and the determinants of Dieudonne, Study, Moore, etc., are related to
each other much more than one would expect.

The notion of quasideterminants for matrices over a noncommutative division ring
was introduced in [GR,GR1,GR2]. Quasideterminants are defined in the ‘‘most non-
commutative case’’, namely, for matrices over free division rings. We believe that qua-
sideterminants should be one of main organizing tools in noncommutative algebra
giving them the same role determinants play in commutative algebra. The quasi-
determinant is not an analog of the commutative determinant but rather of a ratio of the
determinant of an n � n-matrix to the determinant of an ðn � 1Þ � ðn � 1Þ-submatrix.

The main property of quasideterminants is a ‘‘heredity principle’’: let A be a
square matrix over a division ring and ðAijÞ a block decomposition of A (into
submatrices of A). Consider the Aij ’s as elements of a matrix X : Then the
quasideterminant of the matrix X will be a matrix B; and (under natural
assumptions) the quasideterminant of B is equal to a suitable quasideterminant of
A: Since determinants of block matrices are not defined, there is no analog of this
principle for ordinary (commutative) determinants.

Quasideterminants have been effective in many areas including noncommutative
symmetric functions [GKLLRT], noncommutative integrable systems [EGR,EGR1,
RS], quantum algebras and Yangians [GR,GR1,GR2,KL,Mol,Mol1,MolR], and so
on [P,RRV,RSh,Sch]. Quasideterminants and related quasi-Plücker coordinates
are also important in various approaches to noncommutative algebraic geometry
(e.g., [K,KR,SvB]).

Many areas of noncommutative mathematics (Ore rings, rings of differential
operators, theory of factors, ‘‘quantum mathematics’’, Clifford algebras, etc.) were
developed separately from each other. Our approach shows an advantage of working
with totally noncommutative variables (over free rings and division rings). It leads us
to a large variety of results, and their specialization to different noncommutative
areas implies known theorems with additional information.

The price one pays for this is a huge number of inversions in rational
noncommutative expressions. The minimal number of successive inversions required
to express an element is called the height of this element. This invariant (inversion
height) reflects the ‘‘degree of noncommutativity’’ and it is of a great interest by itself.

Our experience shows that in dealing with noncommutative objects one should not
imitate the classical commutative mathematics, but follow ‘‘the way it is’’ starting
with basics. In this paper we concentrate on two problems: noncommutative Plücker
coordinates (as a background of a noncommutative geometry) and the noncommu-
tative Bezout and Viète theorems (as a background of noncommutative algebra). We
apply the obtained results to the theory of noncommutative symmetric functions
started in [GKLLRT].

We have already said that the universal notion of a determinant has a long history,
both visible and invisible. The visible history of determinants comes from the fact
that they are constructed from another class of universal objects: matrices.

The invisible history of determinants is related with the Heredity principle for
matrices: matrices can be viewed as matrices with matrix entries (block matrices) and
some matrix properties come from the corresponding properties of block matrices.
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In some cases, when the matrix entries of the block matrix commute, the determinant
of a matrix can be computed in terms of the determinants of its blocks, but in general
it is not possible: the determinant of a matrix with matrix entries is not defined
because the entries do not commute. In other words, the determinant does not satisfy
the Heredity principle.

Quasideterminants are defined for matrices over division rings and satisfy the
Heredity Principle. Their definition can be specialized for matrices over a ring
(including noncommutative rings) and can be connected with different ‘‘famous’’
determinants. This reflects another general principle: in many cases noncommutative
algebra can be made simpler and more natural than commutative algebra.

The survey describes the first 10 years of development of this very active area, and
we hope that future work will bring many new interesting results.

The paper is organized as follows. In Section 1 a definition of quasideterminants is
given and the main properties of quasideterminants (including the Heredity
principle) are described.

In Section 2 we discuss an important example: quasideterminants of quaternionic
matrices. These quasideterminants can be written as polynomials with real
coefficients in the matrix entries and their quaternionic conjugates.

As we already mentioned, mathematics knows a lot of different versions of
noncommutative determinants. In Section 3 we give a general definition of
determinants of noncommutative matrices (in general, there are many determinants
of a fixed matrix) and show how to obtain some well-known noncommutative
determinants as specializations of our definition.

In Section 4 we introduce noncommutative versions of Plücker and flag
coordinates for rectangular matrices over division rings.

In Section 5 we discuss two related classical problems for noncommutative
polynomials in one variable: how to factorize a polynomial into products of linear
polynomials and how to express the coefficients of a polynomial in terms of its roots.

This results obtained in Section 5 lead us to a theory of noncommutative
symmetric functions (Section 6) and to universal quadratic algebras associated with
so-called pseudo-roots of noncommutative polynomials and noncommutative
differential polynomials (Section 7).

In Section 8 we present another approach to the theory of noncommutative
determinants, traces, etc., and relate it to the results presented in Sections 3 and 5.

Some applications to noncommutative continued fractions, characteristic func-
tions of graphs, noncommutative orthogonal polynomials and integrable systems are
given in Section 9.

1. General theory and main identities

1.1. The division ring of rational functions in free variables

Throughout the paper we will work with rings of fractions of various
noncommutative rings. There are several ways to define rings of fractions in the
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noncommutative case. We will use the approach developed by Amitsur, Bergman
and P. M. Cohn (for a detailed exposition see, e.g., [Co]). The advantage of this
approach is that it is constructive; its disadvantage is that it does not look very
natural.

First, we define the free division ring generated by a finite set. Let X ¼ fx1;y; xmg
be a finite set. Define FðXÞ as the free algebra generated by m þ 2 elements

0; 1; x1;y; xm; unary operations a/� a; a/a�1; and binary operations þ and �;

so that FðX Þ contains such elements as ðx � xÞ�1 and even 0�1: No commutativity,
associativity, distributivity, or other conditions are imposed, so, that, in particular,
elements ðx1 þ x2Þ � x3 and x1 � x3 þ x2 � x3 are distinct, and three elements

ð�x1Þ�1; ð0 � x1Þ�1; �x�1
1 � 1�1;

are also distinct. Elements of FðX Þ are called formulas or rational expressions
over X :

Denote by PðXÞ the subset of FðXÞ consisting of formulas without division, i.e.,

without operation ð Þ�1:
Now let R be a Q-algebra. By a partial homomorphism of FðXÞ to R we mean a

pair ðG; bÞ consisting of a subset GCFðX Þ and a map b : G-R such that

(i) 0; 1AG and bð0Þ ¼ 0; bð1Þ ¼ 1;
(ii) if a1 ¼ �b; a2 ¼ b þ c; a3 ¼ b � c are elements in G then b; cAG and bða1Þ ¼

�bðbÞ; bða2Þ ¼ bðbÞ þ bðcÞ; bða3Þ ¼ bðbÞbðcÞ:
(iii) Let bAG and let bðbÞ be invertible in R: Then b�1AG and bðb�1Þ ¼ ðbðbÞÞ�1:

Let again R be a Q-algebra and a : X-R an arbitrary map. We say that a partial
homomorphism (G;bÞ of FðX Þ to R is an extension of a map a if, in addition to
(i)–(iii), the following condition is satisfied.

(iv) For i ¼ 1;y;m we have xiAG and bðxiÞ ¼ aðxiÞ:

Clearly, for an arbitrary a; conditions (i), (ii), (iv) determine a natural extension
ðPðXÞ; aPÞ; and for any other extension ðG; bÞ we have G*PðXÞ; bjPðXÞ ¼ aP :

For two extension ðG1; b1Þ and ðG2; b2Þ of a define their intersection ðG; bÞ as
follows:

G is the set of all aAG1-G2 such that b1ðaÞ ¼ b2ðaÞ;

bðaÞ ¼ b1ðaÞ ¼ b2ðaÞ for aAG:

Clearly, ðG; bÞ is again an extension of a: Therefore, the intersection of all extensions
of a is again an extension. We call it the canonical extension of a and denote by
ðG0; %a), or simply %a:
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Since each a : X-R admits at least one extension (for example, ðPðXÞ; aPÞ), the
definition of the canonical extension makes sense.

If ðG0; %aÞ is the canonical extension of a and aAG0 we say that a can be

evaluated at a:
Let D be a division ring over Q: Denote by MðX ;DÞ the set of all maps a : X-D:

Clearly, MðX ;DÞ is isomorphic to Dm; where m ¼ card X :

Definition 1.1.1. (i) The domain dom a of an element aAFðXÞ is subset of MðX ;DÞ
consisting of the maps a : X-D such that a can be evaluated at a:

(ii) An element aAFðX Þ is called nondegenerate if dom aa|; and degenerate

otherwise.
(iii) Two elements a1; a2AFðXÞ are called equivalent if they are both nondegene-

rate and %aða1Þ ¼ %aða2Þ for all aAdom a1-dom a2:

For example, for xAX ; the elements x � xAFðXÞ is nondegenerate and equivalent

to 0AFðX Þ whereas ðx � xÞ�1 is degenerate. Another example: for xAX ; the element

a1 ¼ ð1 � xÞ�1 þ ð1 � x�1Þ�1 is equivalent to a2 ¼ 1:

Theorem 1.1.2 (Cohn [Co, Section 7.2]). (i) If a1; a2AFðXÞ are both nondegenerate,

then dom1-dom a2a|:
(ii) Assume, in addition, that D is a division ring with the center Q: Then the

equivalence classes of elements in FðXÞ form a division ring, called FDðX Þ:
(iii) If division rings D1 and D2 with center Q are infinite dimensional

over Q; then the projections FðXÞ-FD1
and FðX Þ-FD2

induce an isomorphism

FD1
BFD2

:

Part (iii) of Theorem 1.1.2 allows us to identify the division rings FDðXÞ
for all division rings D infinite-dimensional over Q: We denote this division ring by
FðX Þ and called it the free division ring generated by X : For example, if X consists of
one element x; then FðX Þ ¼ QðxÞ is the field of rational functions over Q in one
variable.

Elements fAFðX Þ are called (noncommutative) rational functions in variables
xAX ; and any element aAFðX Þ in the equivalence class f is called a rational

expression of the function f :

Remark. Similar results hold if Q is replaced by an arbitrary field k of charac-
teristic 0 (for example, by C).

The next proposition shows that for an arbitrary Q-algebra R evaluations of a
map a : X-R on two equivalent elements coincide.

Proposition 1.1.3. Let R be a Q-algebra, a : X-R a map, and ðG0; %aÞ the canonical

extension of a: If a1; a2AFðX Þ are equivalent and both lie in G0CFðXÞ; then

%aða1Þ ¼ %aða2Þ:
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Definition 1.1.4. Let a : X-R and let ðG0; %aÞ be the canonical extension of a: We say
that a can be evaluated at fAFðXÞ if there exists aAFðX Þ in the equivalence class of
f such that aAG0; and in this case we define the value of a at f by the formula
að f Þ ¼ %aðaÞ:

Proposition 1.1.3 shows that this definition makes sense.
Cohn has shown (see [Co, Section 7.2]) that the division ring FðX Þ can be

characterized by a universality property as follows.

Theorem 1.1.5. There exists a division ring FðXÞ over Q and a monomorphism of

algebras y : Q/XS-FðX Þ with the following property.
If D is an arbitrary division ring and

j : Q/XS-D;

a homomorphism, then there is a unique pair ðR;cÞ consisting of a subring RCFðXÞ
containing yðQ/XSÞ and a homomorphism

c : R-D

such that j ¼ cy and if aAR and cðaÞa0; then a�1AR:
The pair ðFðX Þ; yÞ is determined uniquely up to a unique isomorphism.

To conclude this subsection, we recall the definition of inversion height (see, for
example, [Re]).

Definition 1.1.6. (i) The inversion height of a formula aAFðX Þ is the maximal
number of nested inversions in a:

(ii) The inversion height of an element fAFðX Þ is the smallest inversion height of a
formula in the equivalence class f :

Examples. (i) The inversion height of a polynomial in generators xAX equals
zero.

(ii) The inversion height of the ratio of two polynomials PQ�1 equals 0 if
P is right divisible by Q (i.e., there exists a polynomial R such that P ¼ RQ), and
1 otherwise.

In the next two examples, let x; y; z be three different elements of X :

(iii) Consider the elements a1; a2AFðXÞ given by the formulas a1 ¼ ð1 � xÞ�1 þ
ð1 � x�1Þ�1 and a2 ¼ x�1 þ x�1ðz�1y�1 � x�1Þ�1

x�1: Let f1 and f2 be the corre-
sponding elements in FðXÞ: Then the inversion height of a1 and a2 equals 2: On the

other hand, in FðXÞ we have a1 ¼ 1 and a2 ¼ ðx � yzÞ�1: Hence, the height of f1

equals 0 and the height of f2 equals 1:

(iv) The height of the element fAFðX Þ given by the formula ðx � yw�1zÞ�1

equals 2:
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1.2. Definition of quasideterminants

Let I ; J be two finite sets of the same cardinality n and X be the set of n2 elements
xij ; 1pi; jpn: Denote by FðXÞ the free division ring generated by X (see 1.1). Let X

be the n � n-matrix over FðXÞ with rows indexed by elements of I ; columns indexed
by elements of J; and the ði; jÞth entry equal to xijAFðXÞ:

Proposition 1.2.1. The matrix X is invertible over FðXÞ:

Proof. The proof is by induction in n: Let us assume, for simplicity, that I ¼ J ¼
f1;y; ng:

For n ¼ 1; X ¼ ðx11Þ and the inverse matrix Y ¼ X�1 is Y ¼ ðy11Þ; where y11 ¼
ðx11Þ�1:

Let nX2: Represent X ¼ ðxijÞ as a 2 � 2 block matrix according to the

decompositions f1;y; ng ¼ f1;y; n � 1g,fng of I and J;

X ¼
X11 X12

X21 X22

� �
so that X11; X12; X21; X22 are matrices of order ðn � 1Þ � ðn � 1Þ; ðn � 1Þ � 1;
1 � ðn � 1Þ; and 1 � 1; respectively. Then one can directly verify that the matrix Y

given in the same block decomposition

Y ¼
Y11 Y12

Y21 Y22

� �
by the formulas

Y11 ¼ ðX11 � X12X�1
22 X21Þ�1;

Y12 ¼ �X�1
11 X12ðX22 � X21X�1

11 X12Þ�1;

Y21 ¼ �X�1
22 X21ðX11 � X12X�1

22 X21Þ�1;

Y22 ¼ ðX22 � X21X�1
11 X12Þ�1;

is the inverse to X :
Let I ; J be as in 1.2.1 and let Y be the matrix inverse to X ; as in Proposition 1.2.1.

Notice that each entry yij of Y is a nonzero element of the division ring FðXÞ: &

Definition 1.2.2 (Quasideterminant of a matrix with formal entries). For iAI ; jAJ

the (i; jÞth quasideterminant jX jij of X is the element of FðXÞ defined by the formula

jX jij ¼ ðyjiÞ�1

where Y ¼ X�1 ¼ ðyijÞ; see Proposition 1.2.1.
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From the proof of Proposition 1.2.1, we obtain the following recurrence relations
for jX jij :

First of all, if n ¼ 1; so that I ¼ fig; J ¼ f jg; then jX jij ¼ xij:

Next, let nX2 and let X ij be the ðn � 1Þ � ðn � 1Þ-matrix obtained from X by
deleting the ith row and the jth column. Then

jX jij ¼ xij �
X

xii0 ðjX ij jj0i0 Þ
�1

xj0j: ð1:2:1Þ

Here the sum is taken over i0AI\fig; j0AJ\f jg:

Remark. In part (ii) of Definition 1.2.1, X ij is the matrix with formal entries xi0j0

indexed by elements i0AI\fig; j0AJ\f jg; and ðjX ijjj0i0 Þ
�1 is the inverse of the

quasideterminant jX ijji0j0 in the corresponding free division ring FðX0ÞCFðXÞ; where

X0 ¼ fxi0j0 ; i0AI\fig; j0AJ\f jgg:

Examples 1.2.3. (a) For the 2 � 2-matrix X ¼ ðxijÞ; i; j ¼ 1; 2; there are four

quasideterminants:

jX j11 ¼ x11 � x12 � x�1
22 � x21; jX j12 ¼ x12 � x11 � x�1

21 � x22;

jX j21 ¼ x21 � x22 � x�1
12 � x11; jX j22 ¼ x22 � x21 � x�1

11 � x12:

(b) For the 3 � 3-matrix X ¼ ðxijÞ; i; j ¼ 1; 2; 3; there are 9 quasideterminants. One

of them is

jX j11 ¼ x11 � x12ðx22 � x23x�1
33 x32Þ�1

x21 � x12ðx32 � x33 � x�1
23 x22Þ�1

x31

� x13ðx23 � x22x�1
32 x33Þ�1

x21 � x13ðx33 � x32 � x�1
22 x23Þ�1

x31:

The action of the product of symmetric groups Sn � Sn on I � J; jI j ¼ jJj ¼ n;
induces the action of Sn � Sn on the set of variables faijg; iAI ; jAJ; and the

corresponding action on the free division ring FðXÞ: We denote this latter action by
f/ðs; tÞf ; s; tASn:

The following proposition shows that the definition of the quasideterminant is
compatible with this action.

Proposition 1.2.4. For ðs; tÞASn � Sn we have ðs; tÞðjX jijÞ ¼ jX jsðiÞtð jÞ:

In particular, the stabilizer subgroup of jX jij under the action of Sn � Sn is

isomorphic to Sn�1 � Sn�1:
Proposition 1.2.4 shows that in the definition of the quasideterminant, we do not

need to require I and J to be ordered or a bijective correspondence between I and J

to be given.
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We go now to the definition of quasideterminants over a ring R with unit. Let
A ¼ ðaijÞ; iAI ; jAJ; be a matrix over R: Such a matrix determines the map aA :
X-R; X ¼ fxijg; given by the formula aAðxijÞ ¼ aij:

Definition 1.2.5 (Quasideterminant of a matrix over a ring). Let iAI ; jAJ; and the
formal quasideterminant jX jijAFðXÞ can be evaluated at aA in the sense of

Definition 1.1.4. Then we say that the ðijÞth quasideterminant jAjij of A exists and is

equal to aAðjX jijÞ: Otherwise, we say that jAjij does not exist.

According to this definition, the quasideterminant jAjij of a matrix A over R is an

element of R:
According to Definition 1.2.2 and Proposition 1.2.4, the quasideterminant jAjij

can be computed as follows. Denote by r
j

i the row submatrix of length n � 1

obtained from ith row of A by deleting the element aij ; and by ci
j the column

submatrix of height n � 1 obtained from jth column of A by deleting the element aij :

Proposition 1.2.6. Let jI j; jJj41 and assume that the ðn � 1Þ � ðn � 1Þ-matrix Aij is

invertible over R: Then

jAjij ¼ aij � r
j

i ðAijÞ�1
ci

j: ð1:2:2Þ

Remark. For a generic matrix A; to find the quasideterminant jAjij; one should take

the formula to jX jij ; substitute xij/aij ; and verify that all inversions exist in R:

However, in special cases (for example, when some of the entries of A equal zero),
one might need to replace the formula for the quasideterminant by an equivalent
formula and only then to substitute xij/aij : Here is an example.

Let

A ¼
a11 a12 a13

a21 a22 a23

0 a32 a33

0B@
1CA;

where a21 and a32 are invertible in R: The quasideterminant jAj13 cannot be defined

using formula (1.2.1) since the rational expression a12ða22 � a21a�1
31 a32Þ�1

a23 is not

defined. However, if we replace this expression in formula (1.2.1) by the equivalent

expression a12a�1
32 a31ða22a�1

32 a31 � a21Þ�1
a23; the new formula is defined for the matrix

A and the corresponding rational function given the quasideterminant jAj13:
Let us note also that the since the submatrix

A13 ¼
a21 a22

0 a32

� �
is invertible, the quasideterminant jAj13 can be defined using formula (1.2.2).
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Sometimes it is convenient to adopt a more graphic notation for the
quasideterminant by boxing the element aij : For A ¼ ðaijÞ; i; j ¼ 1;y; n; we write

jAjpq ¼

a11 y a1q y a1n

y y

ap1 y y apn

y y

an1 y anq y ann

������������

������������
:

If A is a generic n � n-matrix (in the sense that all square submatrices of A are

invertible), then there exist n2 quasideterminants of A: However, a nongeneric matrix

may have k quasideterminants, where 0pkpn2: Example 1.2.3(a) shows that each of
the quasideterminants jAj11; jAj12; jAj21; jAj22 of a 2 � 2-matrix A is defined

whenever the corresponding element a22; a21; a12; a11 is invertible.

Remark. The definition of the quasideterminant can be generalized to define jAjij for

a matrix A ¼ ðaijÞ in which each aij is an invertible morphism Vj-Vi in an additive

category C and the matrix Apq of morphisms is invertible. In this case the
quasideterminant jAjpq is a morphism from the object Vq to the object Vp:

The next example shows that the notion of a quasideterminant is not a
generalization of a determinant over a commutative ring, but rather a generalization
of a ratio of two determinants.

Example. If the elements aij of the matrix A commute, then

jAjpq ¼ ð�1Þpþq det A

det Apq
:

We will show in Section 3 that similar expressions for quasideterminants can be
given for quantum matrices, quaternionic matrices, Capelli matrices and other cases
listed in the Introduction.

In general quasideterminants are not polynomials in their entries, but
(noncommutative) rational functions. The following theorem was conjectured by
Gelfand and Retakh, and proved by Reutenauer [Re] in a slightly different form.

Theorem 1.2.7. Quasideterminants of the n � n-matrix X ¼ ðxijÞ with formal entries

have the inversion height n � 1 over the free division ring FðXÞ; X ¼ fxijg:

In the commutative case determinants are finite sums of monomials with
appropriate coefficients. As is shown in [GR1,GR2], in the noncommutative case
quasideterminants of a matrix X ¼ ðxijÞ with formal entries xij can be identified with

formal power series in the matrix entries or their inverse. A simple example of this
type is described below.
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Let X ¼ ðxijÞ; i; j ¼ 1;y; n; be a matrix with formal entries. Denote by En the

identity matrix of order n and by Gn the complete oriented graph with vertices
f1; 2;y; ng; with the arrow from i to j labeled by xij : A path p :
i-k1-k2-?-kt-j is labeled by the word w ¼ xik1

xk1k2
xk2k3

yxkt j:

Denote by Pij the set of words labelling paths going from i to j; i.e. the set

of words of the form w ¼ xik1
xk1k2

xk2k3
yxkt j: A simple path is a path p such that

ksai; j for every s: Denote by Pij
0 the set of words labelling simple paths

from i to j:
Let R be the ring of formal power series in xij over a field. From [Co, Section 4], it

follows that there is a canonical embedding of R in a division ring D such that the
image of R generates D: We identify R with its image in D:

Proposition 1.2.8. Let i; j be two distinct integers between 1 and n: The rational

functions jIn � X jii; jIn � X j�1
ij are defined in D and

jIn � X jii ¼ 1 �
X

wAP0
ii

w; jIn � X j�1
ij ¼

X
wAPij

w:

Example. For n ¼ 2;

jI2 � X j11 ¼ 1 � x11 �
X
pX0

x12x
p
22x21:

For some matrices of special form over a ring, quasideterminants can be expressed
as polynomials in the entries of the matrix. The next proposition shows that this
holds, in particular, for the so-called almost triangular matrices. Such matrices play
an important role in many papers, including [DS,Ko,Gi].

Proposition 1.2.9. The following quasideterminant is a polynomial in its entries:

a11 a12 a13 y

�1 a22 a23 y a2n

0 �1 a33 y a3n

y

0 y �1 ann

������������

������������
¼ a1n þ

X
1pj1oj2o?ojkon

a1j1 aj1þ1; j2 aj2þ1; j3yajkþ1;n:

Remark. Denote the expression on right-hand side by PðAÞ: Note that ð�1Þn�1
PðAÞ

equals to the determinant of the almost upper-triangular matrix over a commutative
ring. For noncommutative almost upper triangular matrices, Givental [Gi] (and

others) defined the determinant as ð�1Þn�1
PðAÞ:
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Example. For n ¼ 3 we have

PðAÞ ¼ a13 þ a11a23 þ a12a33 þ a11a22a33:

1.3. Transformation properties of quasideterminants

Let A ¼ ðaijÞ be a square matrix of order n over a ring R:

(i) The quasideterminant jAjpq does not depend on permutations of rows and

columns in the matrix A that do not involve the pth row and the qth column. This
follows from Proposition 1.2.3.

(ii) The multiplication of rows and columns. Let the matrix B ¼ ðbijÞ be obtained

from the matrix A by multiplying the ith row by lAR from the left, i.e., bij ¼ laij and

bkj ¼ akj for kai: Then

jBjkj ¼
ljAjij if k ¼ i;

jAjkj if kai and l is invertible:

(

Let the matrix C ¼ ðcijÞ be obtained from the matrix A by multiplying the jth

column by mAR from the right, i.e. cij ¼ aijm and cil ¼ ail for all i and laj: Then

jCjic ¼
jAjijm if l ¼ j;

jAjic if laj and m is invertible:

�
(iii) The addition of rows and columns. Let the matrix B be obtained from A by

replacing the kth row of A with the sum of the kth and lth rows, i.e., bkj ¼ akj þ alj ;

bij ¼ aij for iak: Then

jAjij ¼ jBjij ; i ¼ 1;yk � 1; k þ 1;yn; j ¼ 1;y; n:

Let the matrix C be obtained from A by replacing the kth column of A with the
sum of the kth and lth columns, i.e., cik ¼ aik þ ail ; cij ¼ aij for jak: Then

jAjij ¼ jCjij ; i ¼ 1;y; n; ;y; c� 1; cþ 1;yn:

1.4. General properties of quasideterminants

1.4.1. Two involutions (see [GR4])

For a square matrix A ¼ ðaijÞ over a ring R; denote by IA ¼ A�1 the inverse

matrix (if it exists), and by HA ¼ ða�1
ji Þ the Hadamard inverse matrix (also if it

exists). It is evident that if IA exists, then I2A ¼ A; and if HA exists, then H2A ¼ A:

Let A�1 ¼ ðbijÞ: According to Theorem 1.2.1, bij ¼ jAj�1
ji : This formula can be

rewritten in the following form.
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Theorem 1.4.1. For a square matrix A over a ring R;

HIðAÞ ¼ ðjAjijÞ ð1:4:1Þ

provided that all quasideterminants jAjij exist.

1.4.2. Homological relations (see [GR])

Let X ¼ ðxijÞ be a square matrix of order n with formal entries. For 1pk; lpn let

X kl be the submatrix of order n � 1 of the matrix X obtained by deleting the kth row
and the lth column. Quasideterminants of the matrix X and the submatrices are
connected by the following homological relations.

Theorem 1.4.2. (i) Row homological relations:

�jAjij � jAicj�1
sj ¼ jAjic � jAijj�1

sc ; sai:

(ii) Column homological relations:

�jAkj j�1
it � jAjij ¼ jAijj�1

kt � jAjkj ; taj:

The same relations hold for matrices over a ring R provided the corresponding
quasideterminants exist and are invertible.

A consequence of homological relations is that the ratio of two quasideterminants
of an n � n matrix (each being a rational function of inversion height n � 1) actually
equals a ration of two rational functions each having inversion height on � 1:

1.4.3. Heredity

Let A ¼ ðaijÞ be an n � n matrix over a ring R; and let

A ¼
A11 y A1s

As1 y Ass

0B@
1CA ð1:4:2Þ

be a block decomposition of A; where each Apq is a kp � lq matrix, k1 þ?þ ks ¼
l1 þ?þ ls ¼ n: Let us choose p0 and q0 such that kp0 ¼ lq0 ; so that Ap0q0 is a square

matrix.
Let also X ¼ ðxpqÞ be a matrix with formal variables and jX jp0q0 be the p0q0-

quasideterminant of X : In the formula for jX jp0q0 as a rational function in variable

xpq we can substitute each variable xpq with the corresponding matrix Apq; obtaining

a rational expression FðApqÞ: Let us note that all matrix operations in this rational

expression formally make sense, i.e., in each addition, the orders of summands
coincide, in each multiplication, the number of columns of the first multiplier equals
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the number of rows of the second multiplier, and each matrix that has to be inverted
is a square matrix. Let us assume that all matrices in this rational expression for that
need to be inverted, are indeed invertible over R: Computing FðApqÞ; we obtain an

kp0 � lq0 matrix over R; whose rows are naturally numbered by indices

i ¼ k1 þ?þ kp0�1 þ 1;y; k1 þ?þ kp0 ð1:4:3Þ

and columns are numbered by indices

j ¼ l1 þ?þ lq0�1 þ 1;y; l1 þ?þ lq0 : ð1:4:4Þ

We denote this matrix by jX jp0q0 ðAÞ:
Let us note that under our assumptions, kp0 ¼ lq0 ; so that jX jp0q0 ðAÞ is a square

matrix over R:

Theorem 1.4.3. Let the index i lies in the range (1.4.3) and the index j lies in the range

(1.4.4). Let us assume that the matrix jX jp0q0 ðAÞ is defined. Then each of the

quasideterminants jAjij and jjX jp0q0 ðAÞjij exist if and only if the other exists, and in this

case

jAjij ¼ jjX jp0q0 ðAÞjij : ð1:4:5Þ

Example 1. Let in (1.4.2) s ¼ 2; p0 ¼ q0 ¼ 1 and k1 ¼ l þ 1 ¼ 1: Then formula (1.4.5)
becomes the inductive definition of the quasideterminant jAjij (see Definition 1.2.5).

Example 2. Let

A ¼

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

0BBB@
1CCCA:

Take the decomposition A ¼ A11

A21

A12

A22

� �
of A into four 2 � 2 matrices, so that A11 ¼

a11

a21

a12

a22

� �
; A12 ¼ a13

a23

a14

a24

� �
; A21 ¼ a31

a41

a32

a42

� �
; A22 ¼ a33

a43

a34

a44

� �
: Let us use formula

(1.4.5) to find the quasideterminant jAj13: We have

jX j12ðAÞ ¼A12 � A11A�1
21 A22

¼
a13 a14

a23 a24

� �
�

a11 a12

a21 a22

� �
a31 a32

a41 a42

� ��1
a33 a34

a43 a44

� �
¼

a13 �y a14 �y

a23 �y a24 �y

� �
:
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Denote the matrix in the right-hand side of this formula by c13

c23

c14

c24

� �
: Then

jAj13 ¼
c13 c14

c23 c24

���� ����
13

;

or, in other notation,

jAj13 ¼ c14

c23 c24

�����
�����:

1.4.4. A generalization of the homological relations

Homological relations admit the following generalization. For a matrix A ¼ ðaijÞ;
iAI ; jAJ; and two subsets LCI ; MCJ denote by AL;M the submatrix of the matrix
A obtained by deleting the rows with the indexes cAL and the columns with the
indexes mAM: Let A be a square matrix, L ¼ ðc1;y; ckÞ;M ¼ ðm0;y;mkÞ: Set
Mi ¼ M\fmig; i ¼ 0;y; k:

Theorem 1.4.4 (Gelfand et al. [GR1,GR2]). For peL we have

Xk

i¼0

jAL;Mi jpmi
� jAj�1

cmi
¼ dpc;

Xk

i¼0

jAj�1
mic

� jAMi ;Ljmip
¼ dcp;

provided the corresponding quasideterminants are defined and the matrices jAj�1
mic

;

jAj�1
cmi

are invertible over R:

1.4.5. Quasideterminants and Kronecker tensor products

Let A ¼ ðaijÞ; B ¼ ðbabÞ be matrices over a ring R: Denote by C ¼ A#B the

Kronecker tensor product, i.e., the matrix with entries numbered by indices ðia; jbÞ;
and with the ðia; jbÞth entry equal to cia; jb ¼ aijbab:

Proposition 1.4.5. If quasideterminants jAjij and jBjab are defined, then the

quasideterminant jA#Bjia; jb is defined and

jA#Bjia; jb ¼ jAjij jBjab:

Note that in the commutative case the corresponding identity determinants is
different. Namely, if A is a m � m-matrix and B is a n � n-matrix over a commutative

ring, then detðA#BÞ ¼ ðdet AÞnðdet BÞm:
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1.4.6. Quasideterminants and matrix rank

Let A ¼ ðaijÞ be a matrix over a division ring.

Proposition 1.4.6. If the quasideterminant jAjij is defined, then the following statements

are equivalent.

(i) jAjij ¼ 0;

(ii) the ith row of the matrix A is a left linear combination of the other rows of A;
(iii) the jth column of the matrix A is a right linear combination of the other

columns of A:

Example. Let i; j ¼ 1; 2 and jAj11 ¼ 0; i.e., a11 � a12a�1
22 a21 ¼ 0: Therefore, a11 ¼

la21; where l ¼ a12a�1
22 : Since a12 ¼ ða12a�1

22 Þa22; the first row of A is proportional to

the second row.

There exists the notion of linear dependence for elements of a (right or left) vector
space over a division ring. So there exists the notion of the row rank (the dimension
of the left vector space spanned by the rows) and the notion of the column rank (the
dimension of the right vector space spanned by the columns) and these ranks are
equal [Ja,Co]. This also follows from Proposition 1.4.6.

By definition, an r-quasiminor of a square matrix A is a quasideterminant of an
r � r-submatrix of A:

Proposition 1.4.7. The rank of the matrix A over a division algebra is Xr if and only if

at least one r-quasiminor of the matrix A is defined and is not equal to zero.

1.5. Basic identities

1.5.1. Row and column decomposition

The following result is an analogue of the classical expansion of a determinant by
a row or a column.

Proposition 1.5.1. Let A be a matrix over a ring R: For each kap and each caq

we have

jAjpq ¼ apq �
X
jaq

apjðjApqjkjÞ
�1jApjjkq;

jAjpq ¼ apq �
X
iap

jAiqjpiðjApqjicÞ
�1

aiq;

provided all terms in right-hand sides of these expressions are defined.

As it was pointed out in [KL], Proposition 1.5.1 immediately follows from the
homological relations (Theorem 1.4.2).
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1.5.2. Sylvester’s identity

Let A ¼ ðAijÞ; i; j ¼ 1;y; n; be a matrix over a ring R and A0 ¼ ðaijÞ; i; j ¼
1;y; k; a submatrix of A that is invertible over R: For p; q ¼ k þ 1;y; n set

cpq ¼

a1q

A0 ^

akq

ap1 y apk apq

���������

���������
pq

:

These quasideterminants are defined because matrix A0 is invertible.
Consider the ðn � kÞ � ðn � kÞ matrix

C ¼ ðcpqÞ; p; q ¼ k þ 1;y; n:

The submatrix A0 is called the pivot for the matrix C:

Theorem 1.5.2 (see Gelfand and Retakh [GR]). For i; j ¼ k þ 1;y; n;

jAjij ¼ jCjij

The commutative version of Theorem 1.5.2 is the following Sylvester’s theorem.

Theorem 1.5.3. Let A ¼ ðaijÞ; i; j ¼ 1;y; n; be a matrix over a commutative ring.

Suppose that the submatrix A0 ¼ ðaijÞ; i; j ¼ 1;y; k; of A is invertible. For p; q ¼
k þ 1;y; n set

b̃pq ¼ det

a1q

A0 ^

akq

ap1 y apk apq

0BBB@
1CCCA;

B̃ ¼ ðb̃pqÞ; p; q ¼ k þ 1;y; n:

Then

det A ¼ det B̃

ðdet A0Þn�k�1
:

Remark 1. A quasideterminant of an n � n-matrix A is equal to the corresponding
quasideterminant of a 2 � 2-matrix consisting of ðn � 1Þ � ðn � 1Þ-quasiminors of
the matrix A; or to the quasideterminant of an ðn � 1Þ � ðn � 1Þ-matrix consisting of
2 � 2-quasiminors of the matrix A: One can use any of these procedures for an
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inductive definition of quasideterminants. In fact, Heyting [H] essentially defined the
quasideterminants jAjnn for matrices A ¼ ðaijÞ; i; j ¼ 1;y; n; in this way.

Remark 2. Theorem 1.5.2 can be generalized to the case where A0 is a square
submatrix of A formed by some (not necessarily consecutive and not necessarily the
same) rows and columns of A: In particular, in the case where A0 ¼ ðaijÞ; i; j ¼
2;y; n � 1; Theorem 1.5.2 is an analogue of a well-known commutative identity
which is called the ‘‘Lewis Carroll identity’’ (see, for example, [Ho]).

1.5.3. Inversion for quasiminors

The following theorem was formulated in [GR]. For a matrix A ¼ ðaijÞ; iAI ; jAJ;

over a ring A and subsets PCI ; QCJ denote by APQ the submatrix

APQ ¼ ðaabÞ; aAP; bAQ:

Let jI j ¼ jJj and B ¼ A�1 ¼ ðbrsÞ: Suppose that jPj ¼ jQj:

Theorem 1.5.4. Let keP; ceQ: Then

jAP,fkg;Q,fcgjkc � jBI\P;J\Qjck ¼ 1:

Set P ¼ I\fkg;Q ¼ J\fcg: Then this theorem leads to the already mentioned
identity

jAjkc � bck ¼ 1:

Example. Theorem 1.5.4 implies the following identity for principal quasiminors.

Let A ¼ ðaijÞ; i; j ¼ 1;y; n be an invertible matrix over R and B ¼ ðbijÞ ¼ A�1:

For a fixed k; 1pkpn; set AðkÞ ¼ ðaijÞ; i; j ¼ 1;y; k and BðkÞ ¼ ðbijÞ; i; j ¼ k;y; n:

Then

jAðkÞjkk � jBðkÞjkk ¼ 1:

1.5.4. Multiplicative properties of quasideterminants

Let X ¼ ðxpqÞ;Y ¼ ðyrsÞ be n � n-matrices. The following statement follows

directly from Definition 1.2.2.

Theorem 1.5.5. We have

jXY j�1
ij ¼

Xn

p¼1

jY j�1
pj jX j�1

ip :
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1.6. Noncommutative linear algebra

In this section we use quasideterminants to noncommutative generalizations of
basic theorems about systems of linear equations (see [GR,GR1,GR2]).

1.6.1. Solutions of systems of linear equations

Theorem 1.6.1. Let A ¼ ðaijÞ be an n � n matrix over a ring R: Assume that all the

quasideterminants jAjij are defined and invertible. Then

a11x1 þyþ a1nxn ¼ x1

y

an1x1 þyþ annxn ¼ xn

8><>:
for some xiAR if and only if

xi ¼
Xn

j¼1

jAj�1
ji xj : i ¼ 1;y; n:

1.6.2. Cramer’s rule

Let AcðxÞ be the n � n-matrix obtained by replacing the cth column of the matrix
A with the column ðx1;y; xnÞ:

Theorem 1.6.2. In notation of Theorem 1.6.1, if the quasideterminants jAjij and

jAjðxÞjij are defined, then

jAjijxj ¼ jAjðxÞjij:

1.6.3. Cayley–Hamilton theorem

Let A ¼ ðaijÞ; i; j ¼ 1;y; n; be a matrix over a ring R: Denote by En the identity

matrix of order n:
Let t be a formal variable. Set fij ¼ jtEn � Ajij for 1pi; jpn: Then fijðtÞ is a

rational function in t: Define the matrix function f̃ijðtÞ by replacing in fijðtÞ each

element aij with the matrix ãij ¼ aijEn of order n and the variable t by the matrix A:

The functions fijðtÞ are called the characteristic functions of the matrix A:

The following theorem was stated in [GR1,GR2].

Theorem 1.6.3. f̃ijðAÞ ¼ 0 for all i; j ¼ 1;y; n:

2. Important example: quaternionic quasideterminants

As an example, we compute here quasideterminants of quaternionic matrices.
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2.1. Norms of quaternionic matrices

Let H be the algebra of quaternions. Algebra H is an algebra over the field of real

numbers R with generators i; j; k such that i2 ¼ j2 ¼ k2 ¼ �1 and ij ¼ k; jk ¼ i; ki ¼ j:
It follows from the definition that ijþ ji ¼ 0; ikþ ki ¼ 0; jkþ kj ¼ 0:

Algebra H possesses a standard anti-involution a/ %a: if a ¼ x þ yiþ zjþ tk;

x; y; z; tAR; then %a ¼ x � yi� zj� tk: It follows that a %a ¼ x2 þ y2 þ z2 þ t2: The
multiplicative functional n : H-RX0 where nðaÞ ¼ a %a is called the norm of a: One

can see that a�1 ¼ %a
nðaÞ for aa0:

We will need the following generalization of the norm n to quaternionic matrices.
Let Mðn;HÞ be the R-algebra of quaternionic matrices of order n: There exists a
unique multiplicative functional n : Mðn;HÞ-RX0 such that

(i) nðAÞ ¼ 0 if and only if the matrix A is noninvertible,
(ii) If A0 is obtained from A by adding a left-multiple of a row to another row or a

right-multiple of a column to another column, then nðA0Þ ¼ nðAÞ:
(iii) nðEnÞ ¼ 1 where En is the identity matrix of order n:
The number nðAÞ is called the norm of the quaternionic matrix A:
For a quaternionic matrix A ¼ ðaijÞ; i; j ¼ 1;y; n; denote by A� ¼ ð %ajiÞ the

conjugate matrix. It is known that nðAÞ coincides with the Dieudonne determinant of
A and with the Moore determinant of AA� (see [As] and Sections 3.2–3.4 below). The
norm nðAÞ is a real number and it is equal to an alternating sum of monomials of
order 2n in the aij and %aij: An expression for nðAÞ is given by Theorem 2.1.2 below.

Let A ¼ ðaijÞ; i; j ¼ 1;y; n; be a quaternionic matrix. Let I ¼ fi1;y; ikg; J ¼
f j1;y; jkg be two ordered sets of natural numbers such that all ip and all jp are

distinct. Set

zI ;J ¼ ai1 j1 %ai2 j1 ai2 j2yaik jk %ai1 jk :

Denote by miðAÞ the sum of all zI ;JðAÞ such that i1 ¼ i: One can easily see that

miðAÞ is a real number since with each monomial zI ;J it contains the conjugate

monomial zI ;J ¼ zI 0;J 0 ; where I 0 ¼ fi1; ik; ik�1y; i2g; J ¼ f jk; jk�1;y; j1g:

Proposition 2.1.1. The sum miðAÞ does not depend on i:

Example. For n ¼ 1 the statement is obvious. For n ¼ 2 we have

m1ðAÞ ¼ a11 %a21a22 %a12 þ a12 %a22a21 %a11;

m2ðAÞ ¼ a22 %a12a11 %a21 þ a21 %a11a12 %a22:

Note that for two arbitrary quaternions x; y we have xy þ %y %x ¼ 2RðxyÞ ¼ 2RðyxÞ ¼
yx þ %x %y; where RðaÞ is the real part of the quaternion a: By setting x ¼ a11 %a21;
y ¼ a22 %a12 one see that m1ðAÞ ¼ m2ðAÞ:
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Proposition 2.1.1 shows that we may omit the index i in miðAÞ and denote it by
mðAÞ:

Let A ¼ ðaijÞ; i; j ¼ 1;y; n be a matrix. We call an (unordered) set of square

submatrices fA1;y;Asg where Ap ¼ ðaijÞ; iAIp; jAJp a complete set if Ip-Iq ¼
Jp-Jq ¼ | for all paq and

S
p Ip ¼

S
p Jp ¼ f1;y; ng:

Theorem 2.1.2. Let A ¼ ðaijÞ; i; j ¼ 1;y; n be a quaternionic matrix. Then

nðAÞ ¼
X

ð�1Þk1þ?þkp�pmðA1ÞymðApÞ;

where the sum is taken over all complete sets ðA1;y;ApÞ of submatrices of A; ki is the

order of the matrix Ai:

Example. For n ¼ 2 we have

nðAÞ ¼ nða11Þnða22Þ þ nða12Þnða21Þ � ða11 %a21a22 %a12 þ a12 %a22a21 %a11Þ:

Corollary 2.1.3. Let A be a square quaternionic matrix. Fix an arbitrary iAf1;y; ng:
Then

nðAÞ ¼
X

ð�1ÞkðB1Þ�1nðB1ÞmðB2Þ;

where the sum is taken over all complete sets of submatrices ðB1;B2Þ such that B2

contains an element from the ith row, kðB1Þ the order of B1; and nðB1Þ ¼ 1 if B2 ¼ A:

2.2. Quasideterminants of quaternionic matrices

This section contains results from [GRW1].
Let A ¼ ðaijÞ; i; j ¼ 1;y; n; be a quaternionic matrix. Let I ¼ fi1;y; ikg and J ¼

f j1;y; jkg be two ordered sets of natural numbers 1pi1; i2;y; ikpn and
1pj1; j2;y; jkpn such that all ip are distinct and all jp are distinct. For k ¼ 1 set

mI ;JðAÞ ¼ ai1j1 : For kX2 set

mI ;JðAÞ ¼ ai1j2 %ai2j2 ai2j3 %ai3 j3 ai3j4y %aik jk aik j1 :

If the matrix A is Hermitian, i.e., aji ¼ %aij for all i; j; then

mI ;JðAÞ ¼ ai1j2 aj2i2 ai2j3 aj3i3 ai3j4yajkik aik j1 :

To a quaternionic matrix A ¼ ðapqÞ; p; q ¼ 1;y; n; and to a fixed row index i and

a column index j we associate a polynomial in apq; %apq; which we call the ði; jÞth
double permanent of A:
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Definition 2.2.1. The ði; jÞth double permanent of A is the sum

pijðAÞ ¼
X

mI ;JðAÞ;

taken over all orderings I ¼ fi1;y; ing; J ¼ f j1;y; jng of f1;y; ng such that i1 ¼ i

and j1 ¼ j:

Example. For n ¼ 2

p11ðAÞ ¼ a12 %a22a21:

For n ¼ 3

p11ðAÞ ¼ a12 %a32a33 %a23a21 þ a12 %a22a23 %a33a31 þ a13 %a33a32 %a22a21 þ a13 %a23a22 %a32a31:

For a submatrix B of A denote by Bc the matrix obtained from A by deleting all
rows and columns containing elements from B: If B is a k � k-matrix, then Bc is a
ðn � kÞ � ðn � kÞ-matrix. Bc is called the complementary submatrix of B:

Quasideterminants of a matrix A ¼ ðaijÞ are rational functions of elements aij:

Therefore, for a quaternionic matrix A; its quasideterminants are polynomials
in aij and their conjugates, with coefficients that are rational functions of aij

always taking rational values. The following theorem gives expressions for these
polynomials.

Theorem 2.2.2. If the quasideterminant jAjij of a quaternionic matrix is defined,

then

nðAijÞjAjij ¼
X

ð�1ÞkðBÞ�1nðBcÞpijðBÞ;

where the sum is taken over all square submatrices B of A containing aij ; kðBÞ is the

order of B; and we set nðBcÞ ¼ 1 for B ¼ A:

Recall that according to Proposition 1.2.6 the quasideterminant jAjij is defined if

the matrix Aij is invertible. In this case nðAijÞ is invertible, so that formula (2.2.1)
indeed gives an expression for jAjij:

The right-hand side in (2.2.1) is a linear combination with real coefficients of
monomials of lengths 1; 3;y; 2n � 1 in aij and %aij : The number mðnÞ of such

monomials for a matrix of order n is mðnÞ ¼ 1 þ ðn � 1Þ2mðn � 1Þ:

Example. For n ¼ 2

nða22ÞjAj11 ¼ nða22Þa11 � a12 %a22a21:
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For n ¼ 3

nðA11ÞjAj11 ¼ nðA11Þa11 � nða33Þa12 %a22a21 � nða23Þa12 %a32a31

� nða32Þa13 %a23a21 � nða22Þa13 %a33a31 þ a12 %a32a33 %a23a21

þ a12 %a22a23 %a33a31 þ a13 %a33a32 %a22a21 þ a13 %a23a22 %a32a31:

The example shows how to simplify the general formula for quasideterminants of
matrix of order 3 (see Section 1.2) for quaternionic matrices.

The following theorem, which is similar to Corollary 2.1.3, shows that the
coefficients in formula (2.2.1) are uniquely defined.

Theorem 2.2.3. Let quasideterminants jAjij of quaternionic matrices are given by the

formula

xðAijÞjAjij ¼
X

ð�1ÞkðBÞ�1xðBcÞpijðBÞ

and all coefficients xðCÞ depend of submatrix C only, then xðCÞ ¼ nðCÞ for all square

matrix C:

Example. For n ¼ 2 set a11 ¼ 0: Then xða22Þa12a�1
22 a21 ¼ a12 %a22a21: This implies that

xða22Þ ¼ %a22a22 ¼ nða22Þ:

3. Noncommutative determinants

Noncommutative determinants were defined in different and, sometimes, not
related situations. In this section we present some results from [GR,GR1,
GR2,GRW1] describing a universal approach to noncommutative determinants
and norms of noncommutative matrices based on the notion of quasideter-
minants.

3.1. Noncommutative determinants as products of quasiminors

Let A ¼ ðaijÞ; i; j ¼ 1;y; n; be a matrix over a division ring R such that all square

submatrices of A are invertible. For fi1;y; ikg; f j1;y; jkgCf1;y; ng define

Ai1yik ; j1yjk to be the submatrix of A obtained by deleting rows with indices
i1;y; ik and columns with indices j1;y; jk: Next, for any orderings I ¼
ði1;y; inÞ; J ¼ ð j1;y; jnÞ of f1;y; ng set

DI ;JðAÞ ¼ jAji1j1
jAi1j1 ji2 j2

jAi1i2; j1j2 ji3j3
yain jn :

In the commutative case DI ;JðAÞ is, up the sign, the determinant of A: When A is a

quantum matrix DI ;JðAÞ differs from the quantum determinant of A by a factor
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depending on q [GR,GR1,KL]. The same is true for some other noncommutative
algebras. This suggests to call DI ;JðAÞ the ðI ; JÞ-predeterminants of A: From the

‘‘categorical point of view’’ the expressions DI ;ĨðAÞ where I ¼ ði1; i2;y; inÞ; Ĩ ¼
ði2; i3;y; in; i1Þ are particularly important. We denote DIðAÞ ¼ DI ;ĨðAÞ: It is also

convenient to have the basic predeterminant

DðAÞ ¼ Df12yng;f23yn1g: ð3:1:1Þ

We use the homological relations for quasideterminants to compare different DI ;J :
Here we restrict ourselves to elementary transformations of I and J:

Let I ¼ ði1;y; ip; ipþ1;y; inÞ and J ¼ ð j1;y; jp; jpþ1;y; jnÞ: Set I 0 ¼
ði1;y; ipþ1; ip;y; inÞ; J 0 ¼ ð j1;y; jpþ1; jp;y; jnÞ: Set also

X ¼ jAji1; j1
jAi1; j1 ji2; j2

yjAi1yip�2; j1;y; jp�2 jip�1; jp�1
;

Y ¼ jAi1yipþ1; j1;y; jpþ1 jipþ2; jpþ2
yain; jn ;

u ¼ jAi1yip; j1;y; jp jipþ1; jpþ1
;

w1 ¼ jAi1yip�1ipþ1; j1;y; jp jip; jpþ1
;

w2 ¼ jAi1;yip; j1;y; jp�1 jipþ1; jpþ1
:

Proposition 3.1.1. We have

DI ;J 0 ¼ �DI ;JY�1u�1w�1
2 uw2Y ;

DI 0;J ¼ �Xuw�1
1 X�1DI ;JY�1u�1w1Y :

Let C be a commutative ring with a unit and f : R-C be a multiplicative map, i.e.
f ðabÞ ¼ f ðaÞf ðbÞ for all a; bAR:

Let I ¼ ði1;y; inÞ; J ¼ ð j1;y; jnÞ be any orderings of ð1;y; nÞ: For an element s
from the symmetric group of nth order set sðIÞ ¼ ðsði1Þ;y; sðinÞÞ: Let pðsÞ be the
parity of s:

Proposition 3.1.1 immediately implies the following theorem.

Theorem 3.1.2. In notations of Section 3.1 we have

f ðDI ;JðAÞÞ ¼ f ð�1Þpðs1Þþpðs2Þf ðDsðIÞ;sðJÞðAÞÞ:

It follows that f ðDI ;JðAÞ is uniquely defined up to a power of f ð�1Þ: We call

f ðD1yn;1ynÞðAÞÞ the f -determinant A and denote it by fDðAÞ: Note that if f is a
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homomorphism then f -determinant fDðAÞ equals to the usual determinant of the
commutative matrix f ðAÞ:

Corollary 3.1.3. We have

fDðABÞ ¼ fDðAÞ � fDðBÞ:

When R is the algebra of quaternions and f ðaÞ ¼ nðaÞ ¼ a %a; or, in other words, f is
the quaternionic norm, then one can see that fDðaÞ is the matrix quaternionic norm
nðAÞ (see Section 2.1).

In Theorems 3.1.4–3.1.6 we present formulas for determinants of triangular and
almost triangular matrices. A matrix A ¼ ðaijÞ; i; j ¼ 1;y; n; is called an upper-

triangular matrix if aij ¼ 0 for i4j: An upper-triangular matrix A is called a generic

upper-triangular matrix if every square submatrix A consisting of the rows
i1pi2p?pik and the columns j1pj2p?pjk such that i1pj1; i2pj2; y, ikpjk; is
invertible.

Theorem 3.1.4. Let A ¼ ðaijÞ; i; j ¼ 1;y; n; be a generic upper-triangular matrix. The

determinants Di1i2yinðAÞ are defined if and only if i1 ¼ n: In this case

Dni2yin�1
ðAÞ ¼ ann � jAn;i2 j�1

i2n � ai2i2 � jAn;i2 ji2n � jAni2;i2i3 j�1
i3n � ai3i3 jAni2;i2i3 ji3n �y

� jAni2i3yin�1;i2i3yin j�1
inn � ainin � jAni2i3yin�1;i2i3yin jinn:

In particular,

Dn;n�1y2;1ðAÞ ¼ anna�1
n�1;nan�1;n�1an�1;nya�1

1n a11a1n:

A matrix A ¼ ðaijÞ; i; j ¼ 1;y; n; is called an almost upper-triangular matrix if

aij ¼ 0 for i4j þ 1: An almost upper-triangular matrix A is called a Frobenius

matrix if aij ¼ 0 for all jan and iaj þ 1; and ajþ1j ¼ 1 for j ¼ 1;y; n � 1:

Theorem 3.1.5. If A is invertible upper-triangular matrix, then

D1;n;n�1y2ðAÞ ¼ jAj1nan;n�1an�1;n�2ya21:

By Proposition 1.2.7, the determinant D1;n;n�1y2ðAÞ of an upper-triangular matrix

A is polynomial in aij :

Let pðIÞ be the parity of the ordering I ¼ ði1;y; inÞ:

Theorem 3.1.6. If A is a Frobenius matrix and the determinant DIðAÞ is defined, then

DIðAÞ ¼ ð�1ÞpðIÞþ1
a1n:
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Now let R be a division ring, R� ¼ R\f0g the monoid of invertible elements in R

and p : R�-R�=½R�;R�� the canonical homomorphism. To the abelian group
R�=½R�;R�� we adjoin the zero element 0 with obvious multiplication, and denote the

obtained semi-group by R̃: Extend p to a map R-R̃ by setting pð0Þ ¼ 0:
We recall here the classical notion of the Dieudonne determinant (see [D,A]).

There exists a unique homomorphism

det : MnðRÞ-R̃

such that
(i) detA0 ¼ *m det A for any matrix A0 obtained from AAMnðRÞ by multiplying one

row of A from the left by m;
(ii) det A00 ¼ det A for any matrix A00 obtained from A by adding one row to

another;
(iii) detðEnÞ ¼ 1 for the identity matrix En:
The homomorphism det is called the Dieudonne determinant.
It is known that det A ¼ 0 if rankðAÞon (see [A, Chapter 4]). The next proposition

gives a construction of the Dieudonne determinant in the case where rankðAÞ ¼ n:

Proposition 3.1.7. Let A be an n � n-matrix over a division ring R: If rankðAÞ ¼ n; then

(i) There exist orderings I and J of f1;y; ng such that DI ;JðAÞ is defined.

(ii) If DI ;JðAÞ is defined, then the Dieudonne determinant is given by the formula

det A ¼ pðIÞpðJÞpðDI ;JðAÞÞ; where pðIÞ is the parity of the ordering I :

Note that Draxl [Dr] introduced the Dieudonne predeterminant, denoted det: For
a generic matrix A over a division ring there exists the Gauss decomposition A ¼
UDL where U ;D;L are upper-unipotent, diagonal, and lower-unipotent matrices.
Then Draxl detðAÞ is defined as the product of diagonal elements in D from top to
the bottom. For nongeneric matrices Draxl used the Bruhat decomposition instead
of the Gauss decomposition.

Proposition 3.1.8. detðAÞ ¼ DðAÞ; where DðAÞ is given by (3.1.1).

Proof (For a generic A). Let y1;y; yn be the diagonal elements in D from top to the

bottom. As shown in [GR1,GR2] (see also 4.9), yk ¼ jA12yk�1;12yk�1jkk: Then

detðAÞ ¼ y1y2yyn ¼ DðAÞ: &

Below we consider below special examples of noncommutative determinants.

3.2. Dieudonne determinant for quaternions

Let A ¼ ðaijÞ; i; j ¼ 1;y; n; be a quaternionic matrix. If A is not invertible, then

the Dieudonne determinant of A equals zero. By Proposition 3.1.7, if A is invertible,
there exist orderings I ¼ ði1;y; inÞ; J ¼ ð j1;y; jnÞ of f1;y; ng such that the
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following expressions are defined:

DI ;JðAÞ ¼ jAji1j1
jAi1j1 ji2; j2

jAi1i2; j1j2 ji3j3
yain jn :

By Theorem 2.2.2, DI ;JðAÞ can be expressed as a polynomial in aij and aij with real

coefficients.
In the quaternionic case the Dieudonne determinant D coincides with the map

det : MnðHÞ-RX0

(see [As]).
The following proposition generalizes a result in [VP].

Proposition 3.2.1. In the quaternionic case for each I ; J we have

det A ¼ nðDI ;JðAÞÞ1=2

(the positive square root).

The proof of Proposition 3.2.1 follows from the homological relations for
quasideterminants.

3.3. Moore determinants of Herimitian quaternionic matrices

A quaternionic matrix A ¼ ðaijÞ; i; j ¼ 1;y; n; is called Hermitian if aji ¼ %aji for

all i; j: It follows that all diagonal elements of A are real numbers and that the

submatrices A11; A12;12;y are Hermitian.
The notion of determinant for Hermitian quaternionic matrices was introduced by

Moore in 1922 [M,MB]. Here is the original definition.
Let A ¼ ðaijÞ; i; j ¼ 1;y; n; be a matrix over a ring. Let s be a permutation of

f1;y; ng: Write s as a product of disjoint cycles. Since disjoint cycles commute, we
may write

s ¼ ðk11yk1j1Þðk21yk2j2Þyðkm1ykmjmÞ;

where for each i; we have ki1okij for all j41; and k114k214?4km1: This

expression is unique. Let pðsÞ be the parity of s: The Moore determinant MðAÞ is
defined as follows:

MðAÞ ¼
X
sASn

pðsÞak11;k12
yak1j1

;k11
ak21;k22

yakmjm ;km1
: ð3:3:1Þ

(There are equivalent formulations of this definition; e.g., one can require ki14kij for

all j41:) If A is Hermitian quaternionic matrix then MðAÞ is a real number. Moore
determinants have nice features and are widely used (see, for example, [Al,As,Dy1]).
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We will show (Theorem 3.3.2) that determinants of Hermitian quaternionic
matrices can be obtained using our general approach. First we prove that for a
quaternionic Hermitian matrix A; the determinants DI ;I 0 ðAÞ coincide up to a sign.

Recall that DðAÞ ¼ DI ;I 0 ðAÞ for I ¼ f1;y; ng and that DðAÞ is a pre-Dieudonne

determinant in the sense of [Dr]. If A is Hermitian, then DðAÞ is a product of real
numbers and, therefore, DðAÞ is real.

Proposition 3.3.1. Let pðIÞ be the parity of the ordering I : Then DðAÞ ¼
pðIÞpðJÞDI ;JðAÞ:

The proof follows from homological relations for quasideterminants.

Theorem 3.3.2. Let A be a Hermitian quaternionic matrix. Then DðAÞ ¼ MðAÞ
(see (3.3.1)).

Proof. We use the noncommutative Sylvester formula for quasideterminants
(Theorem 1.5.2).

For i; j ¼ 2;y; n define a Hermitian matrix Bij by the formula

Bij ¼
a11 a1j

ai1 aij

� �
:

Let bij ¼ MðBijÞ and cij ¼ jBij j11:

Note that B ¼ ðbijÞ and C ¼ ðcijÞ also are Hermitian matrices. It follows from

(3.3.1) that MðAÞ ¼ a2�n
nn MðBÞ: Note, that MðBÞ ¼ an�1

nn MðCÞ; therefore, MðAÞ ¼
annMðCÞ:

By Theorem 1.5.2, jAj11 ¼ jCj11; jA11j22 ¼ jC11j22;y : So,

jA11j22jA11j22yjA12yn�1;12yn�1jn�1;n�1

¼ jC11j22jC11j22yjC12yn�1;12yn�1jn�1;n�1:

The product on the left-hand side equals DðAÞa�1
nn and the product on right-hand side

equals DðCÞ; so DðAÞ ¼ DðCÞann ¼ MðAÞ: &

3.4. Moore determinants and norms of quaternionic matrices

Proposition 3.4.1. For generic matrices A;B we have

nðAÞ ¼ DðAÞDðA�Þ ¼ DðAA�Þ:

Since AA� is a Hermitian matrix, one has the following

Corollary 3.4.2. nðAÞ ¼ MðAA�Þ:
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3.5. Study determinants

An embedding of the field of complex numbers C into H is defined by an image of
iAC: Chose the embedding given by x þ yi/x þ yiþ 0jþ 0k; where x; yAR and
identify C with its image in H: Then any quaternion a can be uniquely written as
a ¼ aþ jb where a; bAC:

Let Mðn;FÞ be the algebra of matrices of order n over a field F : Define a
homomorphism y : H-Mð2;CÞ by setting

yðaÞ ¼ a � %b

b %a

 !
:

For A ¼ ðaijÞAMðn;HÞ; set ynðAÞ ¼ ðyðaijÞÞ: This extends y to homomorphism of

matrix algebras

yn : Mðn;HÞ-Mð2n;CÞ:

In 1920, Study [St] defined a determinant SðAÞ of a quaternionic matrix A of order
n by setting SðAÞ ¼ det ynðAÞ: Here det is the standard determinant of a complex
matrix. The following proposition is well known (see [As]).

Proposition 3.5.1. For any quaternionic matrix A

SðAÞ ¼ MðAA�Þ:

The proof in [As] was based on properties of eigenvalues of quaternionic matrices.
Our proof based on Sylvester’s identity and homological relations actually shows
that SðAÞ ¼ nðAÞ for a generic matrix A:

3.6. Quantum determinants

Note, first of all, that quantum determinants and the Capelli determinants (to be
discussed in Section 3.7) are not defined for all matrices over the corresponding
algebras. For this reason, they are not actual determinants, but, rather,
‘‘determinant-like’’ expressions. However, using the traditional terminology, we will
talk about quantum and Capelli determinants.

We say that A ¼ ðaijÞ; i; j ¼ 1;y; n; is a quantum matrix if, for some central

invertible element qAF ; the elements aij satisfy the following commutation

relations:

aikail ¼ q�1ailaik for kol;

aikajk ¼ q�1ajkaik for ioj;
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ailajk ¼ ajkail for ioj; kol;

aikajl � ajlaik ¼ ðq�1 � qÞailajk for ioj; kol: ð3:6:1Þ

Denote by Aðn; qÞ the algebra with generators ðaijÞ; i; j ¼ 1;y; n; satisfying

relations (3.6.1). The center of this algebra is the one-dimensional subspace
generated by the so called quantum determinant of A:

The quantum determinant detq A is defined as follows:

detq A ¼
X
sASn

ð�qÞ�lðsÞ
a1sð1Þa2sð2ÞyansðnÞ;

where lðsÞ is the number of inversions in s:
If A is a quantum matrix, then any square submatrix of A also is a quantum

matrix with the same q:
Note that the algebra Aðn; qÞ admits the ring of fractions.

Theorem 3.6.1 (Galland and Retakh [GR], Krob and Leclerc [KL]). In the ring of

fractions of the algebra Aðn; qÞ we have

detq A ¼ ð�qÞi�jjAjij � detq Aij ¼ ð�qÞi�jdetq Aij � jAjij :

Corollary 3.6.2 (Galland and Retakh [GR], Krob and Leclerc [KL]). In the ring of

fractions of the algebra Aðn; qÞ we have

detq A ¼ jAj11jA11j22yann

and all factors on the right-hand side commute.

An important generalization of this result for matrices satisfying Faddeev–
Reshetikhin–Takhtadjan relations is given in [ER].

3.7. Capelli determinants

Let X ¼ ðxijÞ; i; j ¼ 1;y; n be a matrix of formal commuting variables and X T

the transposed matrix. Let D ¼ ð@ijÞ; @ij ¼ @=@xij; be the matrix of the corresponding

differential operators. Since each of the matrices X ;D consists of commuting entries,

det X and det D make sense. Let us set X T D ¼ ð fijÞ; so that fij ¼
P

k xki@=@xkj :

Let W be a diagonal matrix, W ¼ diagð0; 1; 2;y; nÞ:
By definition, the Capelli determinant detCap of X T D � W equals to the sumX

sASn

ð�1ÞlðsÞ
fsð1Þ1ð fsð2Þ2 � dsð2Þ2Þyð fsðnÞn � ðn � 1ÞdsðnÞnÞ:

The classical Capelli identity says that the sum is equal to det X det D:
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Set Z ¼ X T D � In: It was shown in [GR1,GR2] that the Capelli determinant can
be expressed as a product of quasideterminants. More precisely, let D be the algebra
of polynomial differential operators with variables xij :

Theorem 3.7.1. In the ring of fractions of the algebra D we have

jZj11jZ11j22yznn ¼ det X det D

and all factors on the left-hand side commute.

It is known [We] that the right-hand side in the theorem is equal to the Capelli
determinant.

This theorem can also be interpreted in a different way.
Let A ¼ ðeijÞ; i; j ¼ 1;yn be the matrix of the standard generators of the

universal enveloping algebra UðglnÞ: Recall that these generators satisfy the relations

½eij; ekl � ¼ djkeil � dliekj :

Let En be the identity matrix of order n: It is well known (see, for example, [Ho])
that coefficients of the polynomial in a central variable t

detðIn þ tAÞ :¼
X
sASn

ð�1ÞlðsÞðdsð1Þ1 þ tesð1Þ1ÞyðdsðnÞn þ tðesðnÞn � ðn � 1ÞdsðnÞnÞÞ

generate the center of UðglnÞ:
Theorem 3.7.1 can be reformulated in the following way [GKLLRT].

Theorem 3.7.2. detðIn þ tAÞ can be factored in the algebra of formal power series in t

with coefficients in UðglnÞ:

detðIn þ tAÞ ¼ ð1 þ te11Þ
1 þ tðe11 � 1Þ te12

te21

������
������ �y

�

1 þ tðe11 � n þ 1Þ y te1n

y y y

ten1 y

��������
��������

and the factors on the right-hand side commute with each other.

The above version is obtained by using the classical embedding of UðglnÞ into the
Weyl algebra generated by ðxij; @=@xijÞ; i; j ¼ 1;y; n; where eij corresponds to

fij ¼
Xn

k¼1

xki@=@xkj:
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3.8. Berezinians

Let pðkÞ be the parity of an integer k; i.e. pðkÞ ¼ 0 if k is even and pðkÞ ¼ 1 if k is

odd. A (commutative) super-ring over R0 is a ring R ¼ R0"R1 such that

(i) aiajARpðiþjÞ for any amARm; m ¼ 0; 1;

(ii) ab ¼ ba for any aAR0; bAR; and cd ¼ �dc for any c; dAR1:

Let A ¼ X
Z

Y
T

� �
be an ðm þ nÞ � ðm þ nÞ-block-matrix over a super-ring R ¼

R0"R1; where X is an m � m-matrix over R0;T is an n � n-matrix over R0; and

Y ;Z are matrices over R1: If T is an invertible matrix, then X � YT�1Z is an

invertible matrix over commutative ring R0: Super-determinant, or Berezinian, of A

is defined by the following formula:

Ber A ¼ detðX � YT�1ZÞdet T�1:

Note that Ber AAR0:

Theorem 3.8.1. Let R0 be a field. Set Jk ¼ f1; 2;y; kg; kpm þ n and AðkÞ ¼ AJk ;Jk :

Then Ber A is a product of elements of R0:

Ber A ¼ jAj11jAð1Þj22yjAðm�1ÞjmmjAðmÞj�1
mþ1;mþ1yjAðmþn�1Þj�1

mþn;mþn:

3.9. Cartier–Foata determinants

Let A ¼ ðaijÞ; i; j ¼ 1;y; n be a matrix such that the entries aij and akl commute

when iak: In this case Cartier and Foata [CF,F] defined a determinant of A as

detCF A ¼
X
sASn

ð�1ÞlðsÞ
a1sð1Þa2sð2ÞyansðnÞ:

The order of factors in monomials a1sð1Þa2sð2ÞyansðnÞ is insignificant.

Let Cn be the algebra over a field F generated by ðaijÞ; i; j ¼ 1;y; n; with relations

aijakl ¼ aklaij if iak: Algebra Cn admits the ring of fractions.

Theorem 3.9.1. In the ring of fractions of algebra Cn; let A ¼ ðaijÞ; i; j ¼ 1;y; n be a

matrix such that the entries aij and akl commute when iak:

jAjpq ¼ ð�1ÞpþqdetCFðApqÞ�1detCF A

and all factors in (3.9.1) commute.
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Corollary 3.9.2. In the ring of fractions of algebra Cn we have

detCF ¼ jAj11jA11j22yann

and all factors commute.

4. Noncommutative Plücker and Flag coordinates

Most of the results described in this section were obtained in [GR4].

4.1. Commutative Plücker coordinates

Let kpn and A be a k � n-matrix over a commutative ring R: Denote by
Aði1;y; ikÞ the k � k-submatrix of A consisting of columns labeled by the indices
i1;y; ik: Define pi1yikðAÞ :¼ det Aði1;y; ikÞ: The elements pi1yikðAÞAR are called

Plücker coordinates of the matrix A: The Plücker coordinates pi1yikðAÞ satisfy the

following properties:
(i) (invariance) pi1yikðXAÞ ¼ det X � pi1yik ðAÞ for any k � k-matrix X over R;
(ii) (skew-symmetry) pi1yikðAÞ are skew-symmetric in indices i1;y; ik; in

particular, pi1yikðAÞ ¼ 0 if a pair of indices coincides;

(iii) (Plücker relations) Let i1;y; ik�1 be k � 1 distinct numbers which are chosen
from the set 1;y; n; and j1;y; jkþ1 be k þ 1 distinct numbers chosen from the same
set. Then

Xk

t¼1

ð�1Þt
pi1yik�1jtðAÞpj1yjt�1jtþ1yjkþ1

ðAÞ ¼ 0:

Example. For k ¼ 2 and n ¼ 4 the Plücker relations in (iii) imply the famous identity

p12ðAÞp34ðAÞ � p13ðAÞp24ðAÞ þ p23ðAÞp14ðAÞ ¼ 0: ð4:1:1Þ

Historically, Plücker coordinates were introduced as coordinates on Grassmann
manifolds. Namely, let R ¼ F be a field and Gk;n the Grassmannian of k-dimensional

subspaces in the n-dimensional vector space Fn: To each k � n-matrix A of rank k we
associate the subspace of F n generated by the rows of A: By the invariance property
(i), we can view each Plücker coordinate pi1yik as a section of a certain ample line

bundle on Gk;n; and all these sections together define an embedding of Gk;n into the

projective space PN of dimension N ¼ k
n

� �
� 1: In this sense, Plücker coordinates are

projective coordinates on Gk;n:
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4.2. Quasi-Plücker coordinates for n � ðn þ 1Þ- and ðn þ 1Þ � n-matrices

Let A ¼ ðaijÞ; i ¼ 1;y; n; j ¼ 0; 1;y; n; be a matrix over a division ring R:

Denote by AðkÞ the n � n-submatrix of A obtained from A by removing the kth

column and suppose that all AðkÞ are invertible. Choose an arbitrary sAf1;y; ng;
and denote

q
ðsÞ
ij ðAÞ ¼ jAð jÞj�1

si jAðiÞjsj :

Proposition 4.2.1. The element q
ðsÞ
ij ðAÞAR does not depend on s:

We denote the common value of q
ðsÞ
ij ðAÞ by qijðAÞ and call qijðAÞ the left quasi-

Plücker coordinates of the matrix A:

Proof of Proposition 4.2.1. Considering the columns of the matrix A as n þ 1 vectors
in the right n-dimensional space Rn over R; we see that there exists a nonzero ðn þ 1Þ-
vector ðx1;y; xnþ1ÞARnþ1 such that

A

x0

y

xn

0B@
1CA ¼ 0:

This means that

Að jÞ

x0

ybxxj

y

xn

0BBBBBB@

1CCCCCCA ¼ �
a1j

y

anj

0B@
1CAxj:

Since all submatrices AðkÞ are invertible, each xI is a nonzero element of R: Cramer’s

rule and transformations properties for quasideterminants imply that jAð jÞjsixi ¼
�jAðiÞjsjxj: Therefore,

q
ðsÞ
ij ðAÞ ¼ jAð jÞj�1

si jAðiÞjsj ¼ �xix
�1
j ð4:2:1Þ

does not depend on s: &

Proposition 4.2.2. If g is an invertible n � n-matrix over R; then qijðgAÞ ¼ qijðAÞ:

Proof. We have gA

x0

y

xn

0@ 1A ¼ 0: Therefore, qijðgAÞ ¼ �xix
�1
j ¼ qijðAÞ: &
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In the commutative case, qijðAÞ is a ratio of two Plücker coordinates: qijðAÞ ¼
p

1;y;bjj;y;n
=p

1;y;bii;y;n
¼ det Að jÞ=det AðiÞ:

Similarly, we define the right quasi-Plücker coordinates rijðBÞ for ðn þ 1Þ � n-

matrix B ¼ ðbjiÞ: Denote by BðkÞ the submatrix of B obtained from B by removing

the kth row. Suppose that all BðkÞ are invertible, choose sAf1;y; ng; and set

r
ðsÞ
ij ðBÞ ¼ jBð jÞjisjBðiÞj�1

js :

Proposition 4.2.3. (i) The element r
ðsÞ
ij ðBÞ does not depend of s:

Denote the common value of elements r
ðsÞ
ij ðBÞ by rijðBÞ:

(ii) If g is an invertible n � n-matrix over R; then rijðBgÞ ¼ rijðBÞ:

In the commutative case, rijðAÞ ¼ det Bð jÞ=det BðiÞ:

4.3. Definition of left quasi-Plücker coordinates. General case

Let A ¼ ðapqÞ; p ¼ 1;y; k; q ¼ 1;y; n; kon; be a matrix over a division ring R:

Choose 1pi; j; i1;y; ik�1pn such that ieI ¼ fi1;y; ik�1g: Let Aði; j; i1;y; ik�1Þ be
the k � ðk þ 1Þ-submatrix of A with columns labeled by i; j; i1;y; ik�1:

Definition 4.3.1. Define left quasi-Plücker coordinates qI
ijðAÞ of the matrix A by the

formula

qI
ijðAÞ ¼ qijðAði; j; i1;y; ik�1ÞÞ:

By Proposition 4.2.1, left quasi-Plücker coordinates are given by the formula

qI
ijðAÞ ¼

a1ia1i1 y a1;ik�1

y

akiaki1 y akik�1

�������
�������
�1

si

�
a1ja1;i1 y a1;ik�1

y

akjaki1 y akik�1

�������
�������
sj

for an arbitrary s; 1pspk:

Proposition 4.3.2. If g is an invertible k � k-matrix over R; then qI
ijðgAÞ ¼ qI

ijðAÞ:

Proof. Use Proposition 4.2.2. &

In the commutative case qI
ij ¼ pjI=piI ; where pa1yak

are the standard Plücker

coordinates.
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4.4. Identities for the left quasi-Plücker coordinates

The following properties of qI
ij immediately follow from the definition.

(i) qI
ij does not depend on the ordering on elements in I ;

(ii) qI
ij ¼ 0 for jAI ;

(iii) qI
ii ¼ 1 and qI

ij � qI
jk ¼ qI

ik:

Theorem 4.4.1 (Skew-symmetry). Let N; jNj ¼ k þ 1; be a set of indices, i; j;mAN:
Then

q
N\fi; jg
ij � q

N\f j;mg
jm � q

N\fm;ig
mi ¼ �1:

Theorem 4.4.2 (Plücker relations). Fix M ¼ ðm1;y;mk�1Þ;L ¼ ðc1;y; ckÞ: Let

ieM: Then X
jAL

qM
ij � q

L\f jg
ji ¼ 1:

Examples. Suppose that k ¼ 2:
(1) From Theorem 4.4.1 it follows that

q
fcg
ij � q

fig
jc � q

f jg
ci ¼ �1:

In the commutative case, q
fcg
ij ¼ pjc

pic
so this identity follows from the skew-symmetry

pij ¼ �pji:

(2) From Theorem 4.4.2 it follows that for any i; j; c;m

q
fcg
ij � q

fmg
ji þ q

fcg
im � q

f jg
mi ¼ 1:

In the commutative case this identity implies the standard identity (cf. (4.1.1))

pij � pcm � pic � pjm þ pim � pcj ¼ 0:

Remark. The products p
fcg
ij p

fmg
ji (which in the commutative case are equal to

pjc

pic
� pim

pjm
)

can be viewed as noncommutative cross-ratios.

To prove Theorems 4.4.1 and 4.4.2 we need the following lemma. Let A ¼
ðaijÞ; i ¼ 1;y; k; j ¼ 1;y; n; kon; be a matrix over a division ring. Denote

ARTICLE IN PRESS
I. Gelfand et al. / Advances in Mathematics 193 (2005) 56–14192



by Aj1;y; jc ; cpn; the k � c-submatrix ðaijÞ; i ¼ 1;y; k; j ¼ j1;y; jc: Consider the

n � n-matrix

X ¼
A1yk Akþ1yn

0 En�k

� �
;

where Em is the identity matrix of order m:

Lemma 4.4.3. Let jokoi: If q
1yĵyk
ij ðAÞ is defined, then jX jij is defined and

jX jij ¼ �q
1yĵyk
ij ðAÞ: ð4:4:1Þ

Proof. We must prove that

jX jij ¼ �jA1yĵykij
�1
si � jA1ykjsj ð4:4:2Þ

provided the right-hand side is defined. We will prove this by induction on c ¼ n � k:
Let us assume that formula (2.2) holds for l ¼ m and prove it for c ¼ m þ 1:
Without loss of generality we can take j ¼ 1; i ¼ k þ 1: By homological relations
(Theorem 1.4.3)

jX jkþ1;1 ¼ �jX kþ1;1j�1
s;kþ1 � jX kþ1;kþ1js1

for an appropriate 1pspk: Here

X kþ1;1 ¼
A2ykþ1 Akþ2yn

0 En�k�1

� �
;

X kþ1;kþ1 ¼
A1yk Akþ2yn

0 En�k�1

� �
:

By the induction assumption

jX kþ1;1js;kþ1 ¼ �jA23ykkþ2j�1
s;kþ2 � jA23ykþ1js;kþ1;

jX kþ1;kþ1js1 ¼ �jA23ykkþ2j�1
s;kþ2 � jA1ykjs1

and jX jkþ1;1 ¼ �p23yk
kþ1;1 : &
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To prove Theorem 4.4.2 we apply the second formula in Theorem 1.4.4 to the
matrix

X ¼
A1yk Akþ1yn

0 En�k

� �

for M ¼ ðk þ 1;y; nÞ and any L such that jLj ¼ n � k � 1: By Lemma 4.4.3,

jX jmic ¼ �q1y#cykðAÞ; jX Mi ;Ljmiq
¼ �p1yn\L

miq
ðAÞ; and Theorem 4.4.2 follows from

Theorem 1.4.4. &

To prove Theorem 4.4.1 it is sufficient to take the matrix X for n ¼ k þ 1 and use
homological relations.

Theorem 4.4.4. Let A ¼ ðaijÞ; i ¼ 1;y; k; j ¼ 1;y; n; be a matrix with formal

entries and f ðaijÞ an element of a free skew-field F generated by aij: Let f be invariant

under the transformations

A-gA

for all invertible k � k-matrices g over F : Then f is a rational function of the quasi-

Plücker coordinates.

Proof. Let bij ¼ aij for i; j ¼ 1;y; k: Consider the matrix B ¼ ðbijÞ: Then B�1 ¼
ðjBj�1

ji Þ: Set C ¼ ðcijÞ ¼ B�1A: Then

cij ¼
dij for jpk;

q1yîyk
ij ðAÞ for j4k:

(

By invariance, f is a rational expression of cij with j4k:

4.5. Right quasi-Plücker coordinates

Consider a matrix B ¼ ðbpqÞ; p ¼ 1;y; n; q ¼ 1;y; k; kon over a division ring

F : Choose 1pi; j; i1;y; ik�1pn such that jeI ¼ ði1;y; ik�1Þ: Let Bði; j; i1;y; ik�1Þ
be the ðk þ 1Þ � k-submatrix of B with rows labeled by i; j; i1;y; ik�1:

Definition 4.5.1. Define right quasi-Plücker coordinates rI
ijðBÞ of the matrix B by the

formula

rI
ijðBÞ ¼ rijðBði; j; i1;y; ik�1ÞÞ:
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By Proposition 4.2.3, right quasi-Plücker coordinates are given by the formula

rI
ijðBÞ ¼

bi1 y bik

bi11 y bi1k

y

bik�11 y bik�1k

���������

���������
it

�

bj1 y bjk

bi11 y bi1k

y

bik�11 y bik�1k

���������

���������
�1

jt

for an arbitrary t; 1ptpk:

Proposition 4.5.2. rI
ijðBgÞ ¼ rI

ijðBÞ for each invertible k � k-matrix g over F :

4.6. Identities for the right quasi-Plücker coordinates

Identities for rI
ij are dual to corresponding identities for the left quasi-Plücker

coordinates qI
ij: Namely,

(i) rI
ij does not depend on the ordering on elements of I ;

(ii) rI
ij ¼ 0 for iAI ;

(iii) rI
ii ¼ 1 and rI

ij � rI
jk ¼ rI

ik:

Theorem 4.6.1 (Skew-symmetry). Let N; jNj ¼ k þ 1; be a set of indices, i; j;mAN:
Then

r
N\fi; jg
ij � r

N\f j;mg
jm � r

N\fm;ig
mi ¼ �1:

Theorem 4.6.2 (Plücker relations). Fix M ¼ ðm1;y;mk�1Þ;L ¼ ðc1;y; ckÞ: Let

ieM: Then X
jAL

r
L\f jg
ij rM

ij ¼ 1:

4.7. Duality between quasi-Plücker coordinates

Let A ¼ ðaijÞ; i ¼ 1;y; k; j ¼ 1;y; n; and B ¼ ðbrsÞ; r ¼ 1;y; n; s ¼ 1;y;

n � k: Suppose that AB ¼ 0: (This is equivalent to the statement that the subspace
generated by the rows of A in the left linear space F n is dual to the
subspace generated by the columns of B in the dual right linear space.)
Choose indices 1pi; jpn and a subset IC½1; n�; jI j ¼ k � 1; such that ieI : Set
J ¼ ð½1; n�\IÞ\fi; jg:
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Theorem 4.7.1. We have

qI
ijðAÞ þ rJ

ijðBÞ ¼ 0:

4.8. Quasi-Pücker coordinates for k � n-matrices for different k

Let A ¼ ðaabÞ; a ¼ 1;y; k; b ¼ 1;y; n; be a k � n-matrix over a noncommuta-

tive division ring R and A0 a ðk � 1Þ � n-submatrix of A: Choose 1pi; j;m; j1;y;
jk�2pn such that iam and i;meJ ¼ f j1;y; jk�2g:

Proposition 4.8.1. We have

qJ
ijðA0Þ ¼ q

J,fmg
ij ðAÞ þ qJ

imðA0Þ � q
J,fig
mj ðAÞ:

4.9. Applications of quasi-Plücker coordinates

Row and column expansion of a quasideterminant: Some of the results obtained in
[GR,GR1,GR2] and partially presented in Section I can be rewritten in terms of
quasi-Plücker coordinates.

Let A ¼ ðaijÞ; i; j ¼ 1;y; n; be a matrix over a division ring R: Choose 1pa; bpn:

Using the notation of section I let B ¼ Afag;|;C ¼ A|;fbg be the ðn � 1Þ � n and
n � ðn � 1Þ submatrices of A obtained by deleting the ath row and the bth column
respectively. For jab and iaa set

qjb ¼ q
1yĵy #byn
jb ðBÞ;

rai ¼ r1y#ayîyn
ai ðCÞ:

Proposition 4.9.1. (i) jAjab ¼ aab �
P

jab aajqjb;

(ii) jAjab ¼ aab �
P

iaa raiaib

provided the terms in the right-hand side of these formulas are defined.

Homological relations:

Proposition 4.9.2. In the previous notation,

(i) jAj�1
ij � jAjic ¼ �qjc ðrow relationsÞ;

(ii) jAjij � jAj�1
kj ¼ �rik ðcolumn relationsÞ:
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Corollary 4.9.3. In the previous notation, let ði1;y; isÞ; ð j1;y; jtÞ be sequences of

indices such that iai1; i1ai2;y; is�1ais; jaj1; j1aj2;y; jt�1ajt: Then

jAjisjt ¼ qisis�1
yqi2i1 qi1i � jAjij � rjj1 rj1j2yrjt�1jt :

Example. For a matrix A ¼ a11 a12

a21 a22

� �
we have

jAj22 ¼ a21 � a�1
11 � jAj11 � a�1

22 � a22;

jAj11 ¼ a12 � a�1
22 � a21 � a�1

11 � jAj11 � a�1
21 � a22 � a�1

12 � a11:

Matrix multiplication: The following formula was already used in the proof of
Theorem 4.4.4. Let A ¼ ðaijÞ; i ¼ 1;y; n; j ¼ 1;y;m; nom; B ¼ ðaijÞ; i ¼
1;y; n; j ¼ 1;y; n; C ¼ ðaikÞ; i ¼ 1;y; n; k ¼ n þ 1;y;m:

Proposition 4.9.4. Let the matrix B be invertible. Then q1yîyn
ik ðAÞ are defined for

i ¼ 1;yn; k ¼ n þ 1;ym; and

B�1C ¼ ðq1yîyn
ik ðAÞÞ; i ¼ 1;y; n; k ¼ n þ 1;y;m:

Quasideterminant of the product: Let A ¼ ðaijÞ;B ¼ ðbijÞ; i; j ¼ 1;yn be matrices

over a division ring R: Choose 1pkpn: Consider the ðn � 1Þ � n-matrix A0 ¼
ðaijÞ; iak; and the n � ðn � 1Þ-matrix B00 ¼ ðbijÞ; jak:

Proposition 4.9.5. We have

jBjkk � jABj�1
kk � jAjkk ¼ 1 þ

X
aak

rka � qak;

where rka ¼ r1y#ayn
ka ðB00Þ are right quasi-Plücker coordinates and qak ¼ q1y#ayn

ak ðA0Þ are

left quasi-Plücker coordinates, provided all expressions are defined.

The proof follows from the multiplicative property of quasideterminants and
Proposition 4.9.2.

Gauss decomposition: Consider a matrix A ¼ ðaijÞ; i; j ¼ 1;y; n; over a division

ring R: Let Ak ¼ ðaijÞ; i; j ¼ k;yn; Bk ¼ ðaijÞ; i ¼ 1;yn; j ¼ k;yn; and Ck ¼
ðaijÞ; i ¼ k;yn; j ¼ 1;yn: These are submatrices of sizes ðn � k þ 1Þ�
ðn � k þ 1Þ; n � ðn � k þ 1Þ; and ðn � k þ 1Þ � n respectively. Suppose that the
quasideterminants

yk ¼ jAkjkk; k ¼ 1;y; n;

are defined and invertible in R:
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Theorem 4.9.6 (see Gelfand et al. [GR1,GR2]).

A ¼
1 xab

&

0 1

0B@
1CA y1 0

&

0 yn

0B@
1CA 0

&

zba 1

0B@
1CA;

where

xab ¼ r
bþ1yn
ab ðBbÞ; 1paobpn;

zba ¼ q
bþ1yn
ba ðCbÞ; 1paobpn:

Similarly, let AðkÞ ¼ ðaijÞ; i; j ¼ 1;y; k; BðkÞ ¼ ðaijÞ; i ¼ 1;y; n; j ¼ 1;y; k;

CðkÞ ¼ ðaijÞ; i ¼ 1;y; k; j ¼ 1;y; n: Suppose that the quasideterminants

y0
k ¼ jAðkÞjkk; k ¼ 1;y; n;

are defined and invertible in R:

Theorem 4.9.7. We have

A ¼
1 0

&

x0
ba 1

0B@
1CA y1

0 0

&

0 yn
0

0B@
1CA 1 zab

0

&

0 1

0B@
1CA;

where

x0
ba ¼ r1ya�1

ba ðBðaÞÞ; 1paobpn;

zab
0 ¼ q1ya�1

ab ðCðaÞÞ; 1paobpn:

Bruhat decompositions: A generalization of Theorem 4.9.6 is given by the following
noncommutative analog of the Bruhat decomposition.

Definition: A square matrix P with entries 0 and 1 is called a permutation matrix if
in each row of P and in each column of P there is exactly one entry 1:

Theorem 4.9.8 (Bruhat decomposition). For an invertible matrix A over a division

ring there exist an upper-unipotent matrix X ; a low-unipotent matrix Y ; a diagonal

matrix D and a permutation matrix P such that

A ¼ XPDY :
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Under the additional condition that P�1XP is an upper-unipotent matrix, the matrices

X ;P;D;Y are uniquely determined by A:

Note that one can always find a decomposition A ¼ XPDY that satisfies the
additional condition.

The entries of matrices X and Y can be written in terms of quasi-Plücker
coordinates of submatrices of A: The entries of D can be expressed as
quasiminors of A:

Examples. Let A ¼ ða11

a21

a12

a22
Þ: If a22a0; then

A ¼ 1 a12a�1
22

0 1

� � jAj11 0

0 a22

� �
1 0

a�1
22 a21 1

� �
:

If a22 ¼ 0 and the matrix A is invertible, then a12a0: In this case,

a11 a12

a21 0

� �
¼

0 1

1 0

� �
a21 0

0 a12

� �
1 0

a�1
12 a11 1

� �
:

An important example of quasi-Plücker coordinates for the Vandermonde matrix
will be considered later.

4.10. Flag coordinates

Noncommutative flag coordinates were introduced in [GR1,GR2].
Let A ¼ ðaijÞ; i ¼ 1;y; k; j ¼ 1;y; n; be a matrix over a division ring R: Let Fp

be the subspace of the left vector space Rn generated by the first p rows of A: Then
F ¼ ðF1CF2C?CFkÞ is a flag in Rn: Put

fj1yjkðFÞ ¼
a1j1 y a1jk

y

akj1 y akjk

�������
�������
kj1

:

In [GR1,GR2] the functions fj1yjkðFÞ were called the flag coordinates of F :

Transformations properties of quasideterminants imply that fj1yjkðFÞ does not

depend on the order of the indices j2;y; jk:

Proposition 4.10.1 (see Gelfand et al. [GR1,GR2]). The functions fj1yjmðFÞ do not

change under left multiplication of A by an upper unipotent matrix.

ARTICLE IN PRESS
I. Gelfand et al. / Advances in Mathematics 193 (2005) 56–141 99



Theorem 4.10.2 (see Gelfand et al. [GR1,GR2]). The functions fj1yjkðFÞ possess the

following relations:

fj1j2j3yjkðFÞfj1j3yjkðFÞ�1 ¼ �fj2j1yjkðFÞfj2j3yjkðFÞ�1;

fj1yjkðFÞfj1yjk�1
ðFÞ�1 þ fj2yjk j1ðFÞfj2yjkðFÞ�1

þ?þ fjkj1yjk�1
ðFÞfjkj1yjk�2

ðFÞ�1 ¼ 0:

Example. Let A ¼ ða11

a21

a12

a22

a13

a23
Þ: Then f12ðFÞa�1

11 ¼ �f21ðFÞa�1
12 and f12ðFÞa�1

11 þ
f23ðFÞa�1

12 þ f31ðFÞa�1
13 ¼ 0:

It is easy to see that

qi1yik�1

ij ðAÞ ¼ ð fii1yik�1
ðFÞÞ�1 � fji1yik�1

ðFÞ:

Theorems 4.4.1 and 4.4.2 can be deduced from Theorem 4.10.2.

5. Factorization of Vandermonde quasideterminants and the Viète theorem

In this section we study factorizations of quasideterminants of Vandermonde
matrices. It is well known that factorizations of Vandermonde determinants over
commutative rings play a fundamental role in mathematics. Factorizations of
noncommutative Vandermonde quasideterminants turn out to be equally important.
This is why we devote a separate section to these results. We also use these
factorizations to prove the noncommutative Vieté theorem, which was formulated in
[GR3,GR4] using our noncommutative form of the Sylvester identity. In Sections 6
and 7 we will give other applications of factorizations of quasideterminants of
Vandermonde matrices. A good exposition of decompositions of Vandermonde
quasideterminants is given in [Os].

5.1. Vandermonde quasideterminants

Let x1; x2;y; xk be a set of elements of a division ring R: For k41 the
quasideterminant

Vðx1;y; xkÞ ¼

xk�1
1 ? xk�1

k

?

x1 ? xk

1 ? 1

���������

���������
1k

is called the Vandermonde quasideterminant.
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We say that a sequence of elements x1;y; xnAR is independent if all
quasideterminants Vðx1;y; xkÞ; k ¼ 2;y; n; are defined and invertible. For
independent sequences x1;y; xn and x1;y; xn�1; z set

y1 ¼ x1; z1 ¼ z;

yk ¼ Vðx1;y; xkÞxkVðx1;y; xkÞ�1; kX2;

zk ¼ Vðx1;y; xk�1; zÞzVðx1;y; xk�1; zÞ�1; kX2:

In the commutative case yk ¼ xk and zk ¼ z for k ¼ 1;y; n:

5.2. Bezout and Viète decompositions of the Vandermonde quasideterminants

Theorem 5.2.1 (Bezout decomposition of the Vandermonde quasideterminant).
Suppose that sequences x1;y;xn and x1;y; xn�1; z are independent. Then

Vðx1;y; xn; zÞ ¼ ðzn � ynÞðzn�1 � yn�1Þ?ðz1 � y1Þ: ð5:2:1Þ

Note that if z commutes with xi; i ¼ 1;y; n; then

Vðx1;y; xn; zÞ ¼ ðz � ynÞðz � yn�1Þ?ðz � y1Þ:

Theorem 5.2.2 (Viète decomposition of the Vandermonde quasideterminant). For

an independent sequence x1;y; xn; z we have

Vðx1;y; xn; zÞ ¼ zn þ a1zn�1 þ?þ an�1z þ an; ð5:2:2Þ

where

ak ¼ ð�1Þk
X

1pi1oi2o?oikpn

yik yik�1
?y1: ð5:2:3Þ

In particular

a1 ¼ �ðy1 þ?þ ynÞ;

a2 ¼
X

1piojpn

yjyi;

?

an ¼ ð�1Þn
yn?y1:
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5.3. Proof of Theorem 5.2.2

By induction on n we show that Theorem 5.2.2 follows from Theorem 5.2.1. For
n ¼ 1 one has Vðx1; zÞ ¼ z � x1 and formulas (5.2.1) and (5.2.2) hold. Suppose that
these formulas hold for m ¼ n � 1: By Theorem 5.2.1

Vðx1;y; xn; zÞ ¼ ðzn � ynÞVðx1;y; xn�1; zÞ

¼ ðVðx1;y; xn�1; zÞ � zÞ � ðyn � Vðx1;y; xn�1; zÞÞ:

By induction,

Vðx1;y; xn�1; zÞ ¼ zn�1 þ b1zn�2 þ?þ bn�1;

where

b1 ¼ �ðy1 þ?þ yn�1Þ;

?

bn�1 ¼ ð�1Þn
yn�1 �y � y1:

Therefore,

Vðx1;y; xn; zÞ ¼ zn þ ðb1 � ynÞzn�1 þ ðb2 � ynb1Þzn�2 þ?� ynbn

¼ zn þ a1zn�1 þ?þ an;

where a1;y; an are given by (5.2.3). &

5.4. Division lemma

To prove Theorem 5.2.1 we need the following result.

Lemma 5.4.1. We have

Vðx1;y; xn; zÞ ¼ Vðx̂2;y; x̂n; ẑÞðz � x1Þ;

ARTICLE IN PRESS
I. Gelfand et al. / Advances in Mathematics 193 (2005) 56–141102



where

bxxk ¼ ðxk � x1Þxkðxk � x1Þ�1; k ¼ 2;y; n

bzz ¼ ðz � x1Þzðz � x1Þ�1:

Proof. By definition,

Vðx1;y; xn; zÞ ¼

xn
1 xn

2 ? zn

xn�1
1 xn�1

2 ? zn�1

?

x1 x2 ? z

1 1 ? 1

�����������

�����������
1;nþ1

:

Multiply the kth row by x1 from the left and subtract it from the ðk � 1Þth row for
k ¼ 2;y; n: Since the quasideterminant does not change, we have

Vðx1;y; xn; zÞ ¼

0 xn
2 � x1xn�1

2 ? zn � xn�1
z

0 xn�1
2 � x1xn�2

2 zn�1 � x1zn�2

^ ^ ^

0 x2 � x1 z � x1

1 1 1

������������

������������
1;nþ1

¼

0 ðx2 � x1Þxn�1
2 ? ðz � x1Þzn�1

^ ^ ^

0 x2 � x1 z � x1

1 1 1

���������

���������
1;nþ1

:

Applying to the last quasideterminant Sylvester’s theorem with the element of index
ðn þ 1; 1Þ as the pivot we obtain

Vðx1;y; xn; zÞ ¼
ðx2 � x1Þxn�1

2 ? ðz � x1Þzn�1

? ?

x2 � x1 z � x1

�������
�������
1n

:

According to elementary properties of quasideterminants, multiplying the kth

column on the right by ðxkþ1 � x1Þ�1 for k ¼ 1;y; n � 1 and the last column by

ðz � x1Þ�1 results in the multiplication of the value of the quasideterminant on the
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right by ðz � x1Þ�1: Therefore,

Vðx1;y; xn; zÞ

¼
ðx2 � x1Þxn�1

2 ðx2 � x1Þ�1 ? ðz � x1Þzn�1ðz � x1Þ�1

^ ^

1 1

�������
�������
1n

ðz � x1Þ

¼
bxxn�1

2 ? bzzn�1

^ ^

1 ? 1

�������
�������
1n

�ðz � x1Þ ¼ Vðbxx2;y; bxxn;bzzÞ � ðz � x1Þ:

5.5. Proof of Theorem 5.2.1

We proceed by induction on n: By Lemma 5.4.1, Theorem 5.2.1 is valid for n ¼ 2:
Also by Lemma 5.4.1,

Vðx1;y; xn; zÞ ¼ Vðbxx2;y; bxxn;bzzÞðz � x1Þ: ð5:5:1Þ

Suppose that our theorem is valid for m ¼ n � 1: Then

Vðbxx2;y; bxxn;bzzÞ ¼ ðzn
0 � yn

0Þyðz02 � y0
2Þ;

where

z02 ¼ bzz;
y0

2 ¼ bxx2;

z0k ¼ Vðbxx2;y; bxxk�1;bzzÞbzzV�1ðbxx2;y; bxxk�1;bzzÞ;
y0

k ¼ Vðbxx2;y; bxxkÞbxxkV�1ðbxx2;y; bxxkÞ for k ¼ 3;y; n:

It suffices to show that z0k ¼ zk and y0
k ¼ yk for k ¼ 2;y; n: For k ¼ 2 this is

obvious. By Lemma 5.4.1,

Vðbxx2;y; bxxk�1;bzzÞ ¼ Vðx1;y; xk�1; zÞðz � x1Þ�1;

and by definition bzz ¼ ðz � x1Þzðz � x1Þ�1: So,

z0k ¼fVðx1;y; xk�1; zÞðz � x1Þ�1gðz � x1Þzðz � x1Þ�1

� fðz � x1ÞV�1ðx1;y; xk�1; zÞg ¼ zk for k ¼ 3;y; n:
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Similarly, y0
k ¼ yk for k ¼ 3;y; n and from (5.5.1) we have

Vðx1;y; xn; zÞ ¼ ðzn � ynÞ?ðz2 � y2Þðz1 � y1Þ: &

5.6. Another expression for the coefficients in Viète decomposition

Another expression for the coefficients a1;y; an in Viète decomposition of
Vðx1;y; xn; zÞ can be obtained from Proposition 1.5.1.

Theorem 5.6.1 (Gelfand et al. [GKLLRT]). We have

Vðx1;y; xn; zÞ ¼ zn þ a1zn�1 þ?þ an;

where for k ¼ 1;y; n

ak ¼ �

xn
1 ? xn

n

?

xn�kþ1
1 ? xn�kþ1

n

xn�k�1
1 ? xn�k�1

n

?

1 ? 1

��������������

��������������
1n

�

xn�1
1 ? xn�1

n

?

xn�k
1 ? xn�k

n

?

1 ? 1

������������

������������

�1

kn

: ð5:6:1Þ

From Theorem 5.6.1 we will get the Bezout and Viète formulas expressing the
coefficients of the equation

zn þ a1zn�1 þ?þ an ¼ 0 ð5:6:2Þ

as polynomials in x1;y; xn conjugated by Vandermonde determinants.

5.7. The Bezout and Viète theorems

Recall that the set of elements x1;y; xn of a ring with unit is independent if all
Vandermonde quasideterminants Vðxi1 ;y; xikÞ for kX2 are defined and invertible.

Lemma 5.7.1. Suppose that x1;y; xn is an independent set of roots of Eq. (5.6.2).
Then the coefficients a1;y; an can be written in the form (5.6.1).

Proof. Consider the system of right linear equations

xn
i þ a1xn�1

i þ?þ an�1xi þ an ¼ 0; i ¼ 1;y; n

in variables a1;y; an and use Cramer’s rule. &
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Theorem 5.7.2 (Noncommutative Bezout theorem). Let x1;y; xn be an independent

set of roots of equation (5.6.2). In notations of Theorem 5.2.1,

zn þ a1zn�1 þ?þ an ¼ ðzn � ynÞ?ðz1 � y1Þ:

Proof. Use Lemma 5.7.1, Theorems 5.6.1 and 5.2.1. &

Theorem 5.7.2 (Noncommutative Viète theorem, see Gelfand and Retakh
[GR3]). Let x1;y; xn be an independent set of roots of Eq. (5.6.2). Then the

coefficients a1;y; an of the equation are given by formulas (5.2.3).

Proof. Use Lemma 3.2.1, Theorems 3.1.4 and 3.1.2. &

A different proof of this theorem, using differential operators, appeared in [EGR].
Another noncommutative version of the Viète Theorem, based on notions of traces
and determinants, was given by Connes and Schwarz in [CS].

6. Noncommutative symmetric functions

General theory of noncommutative symmetric functions was developed in the paper
[GKLLRT]. In fact, [GKLLRT] was devoted to the study of different systems of
multiplicative and linear generators in a free algebra Sym generated by a system of
noncommuting variables Li; i ¼ 1; 2;y : In [GKLLRT] these variables were called
elementary symmetric functions, but the theory was developed independently of the
origin of Li: Thus, in [GKLLRT] only a formal theory of noncommutative symmetric
functions ‘‘without variables’’ was introduced. The real theory of noncommutative
symmetric functions got ‘‘the right to exist’’ only after the corresponding variables
were introduced in [GR3,GR4] following the Vieté theorem and the basic theorem in
the theory of noncommutative symmetric functions has been proved in [Wi].

In this section we apply the general theory to noncommutative symmetric
functions generated by specific Li: As in the commutative case, they depend of a set
of roots of a polynomial equation.

6.1. Formal noncommutative symmetric functions

This theory was started in [GKLLRT] and developed in several papers (see, for
example, [KLT,LST]). An extensive review was given in [Thi]. Here we just recall
some basic constructions.

The algebra Sym is a free graded associative algebra over a field F generated by an
infinite sequence of variables ðLkÞ; deg Lk ¼ k; kX1: The homogeneous component
of degree n is denoted by Symn: The direct sum "nX1Symn is denoted by Symþ:
Initially the Lk’s were regarded as the elementary symmetric functions of some
virtual set of arguments. A natural set of arguments was found later, see [GR3,GR4].
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Recall some properties of the algebra SymN of symmetric commutative poly-
nomials in variables t1;y; tN : The algebra SymN has a natural grading, deg ti ¼ 1;
i ¼ 1;y;N; and is freely generated by the elementary symmetric functions
e1ðNÞ ¼

P
i ti; e2ðNÞ ¼

P
ioj titj;y; eNðNÞ ¼ t1t2ytN : (There are other natural

sets of generators in SymN). Setting tN ¼ 0 one gets a canonical epimorphism of
graded algebras pN : SymN-SymN�1:

The projective limit of graded algebras SymN with respect to the system fpNg is
called the algebra Sym of symmetric functions in infinite set of variables t1; t2;y (see
[Mac]). One can view the algebra Sym as a free commutative algebra generated by
formal series e1 ¼

P
i ti; e2 ¼

P
ioj titj;y; ek ¼

P
i1o?oikti1ytik ;y : The series

ek is called the kth elementary symmetric function in t1; t2;y :
In Sym, there are also other standard sets of generators (see, e.g., [Mac]). The most

common among them are the complete symmetric functions ðhkÞkX1 and the power

symmetric functions ðpkÞkX1: To express them in terms of ðekÞ one can use generating

functions. Namely, set e0 ¼ h0 ¼ 1: Let t be a formal variable. Set lðtÞ ¼
P

kX0 hktk;

sðtÞ ¼
P

kX0; cðtÞ ¼
P

kX1 pktk�1: Then

lðtÞ ¼ sð�tÞ ¼ 1;

cðtÞ ¼ d

dt
log sðtÞ:

Define the canonical epimorphism p : Sym-Sym by setting pðLkÞ ¼ ek; kX1: Let
IN be an ideal Sym generated by all Lk; k4N: The epimorphism p induces the
canonical epimorphism pN of Sym onto the algebra SymN of symmetric polynomials
in commuting variables t1;y; tN ; NX1: Note that pNðINÞ ¼ 0:

Noncommutative analogs of functions ðhkÞ and ðpkÞ can be constructed in the
following way. Let t be a formal variable commuting with all Lk: Set L0 ¼ 1 and
define the generating series

lðtÞ :¼
X
kX0

Lktk:

Definition 6.1.1. The complete homogeneous symmetric functions are the coeffi-
cients Sk in the generating series

sðtÞ :¼
X
kX0

Sktk ¼ lð�tÞ�1: ð6:1:1aÞ

The power sums symmetric functions of the first kind Ck are the coefficients Ck in
the generating series X

kX1

Cktk�1 :¼ sðtÞ�1 d

dt
sðtÞ: ð6:1:1bÞ
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The power sums symmetric functions of the second kind Fk are defined by

X
kX1

Fktk�1 :¼ d

dt
log sðtÞ: ð6:1:1cÞ

By using formulas (6.1.1a)–(6.1.1c) one can prove that pNðSkÞ is the kth
complete symmetric function and pNðCkÞ ¼ pNðFkÞ is the kth power symmetric
function in N commuting variables. Note that in the right-hand sides of (6.1.1b)
and (6.1.1c) different noncommutative analogs of the logarithmic derivative of sðtÞ
are used.

Definition 6.1.1 leads to the following quasideterminantal formulas.

Proposition 6.1.2. For every kX1; one has

Sk ¼ ð�1Þk�1

L1 L2 ? Lk�1

1 L1 ? Lk�2 Lk�1

0 1 ? Lk�3 Lk�2

?

0 0 ? 1 L1

������������

������������
;

Lk ¼ ð�1Þk�1

S1 1 0 ? 0

S2 S1 1 ? 0

S3 S2 S1 y 0

y

Sk�1 Sk�2 ? S1

������������

������������
;

kSk ¼

C1 C2 ? Ck�1

�1 C1 ? Ck�2 Ck�1

0 �2 ? Ck�3 Ck�2

?

0 0 ? �n þ 1 C1

������������

������������
;

kLk ¼

C1 1 0 ? 0

C2 C1 2 ? 0

?

Ck�1 Ck�2 ? C1

���������

���������;
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Ck ¼ ð�1Þk�1

L1 2L2 ? ðk � 1ÞLk�1

1 L1 ? Lk�2 Lk�1

0 1 ? Lk�3 Lk�2

?

0 0 ? 1 L1

������������

������������
;

Ck ¼

S1 1 0 ? 0

2S2 S1 1 ? 0

?

Sk�1 Sk�2 ? S1

���������

���������:

Each of the four sequences ðLkÞ; ðSkÞ; ðCkÞ; and ðFkÞ is a set of generators in Sym:
Therefore, each of the four sets of products Fi1yFiN ; i1;y; iNX1; where Fik equals

to Lik ; Sik ; Cik ; or Fik; is a linear basis in Symþ: Linear relations between these bases

were given in [GKLLRT].
Another important example of a linear basis in Symþ is given by ribbon Schur

functions.

6.2. Ribbon Schur functions

Commutative ribbon Schur functions were defined by MacMahon [M]. Here we
follow his ideas.

Let I ¼ ði1;y; ikÞ; i1;y; ikX1; be an ordered set.

Definition 6.2.1 (Gelfand et al. [GKLLRT]). The ribbon Schur function RI is
defined by the formula

RI ¼ ð�1Þk�1

Si1 Si1þi2 Si1þi2þi3 ?

1 Si2 Si2þi3 ? Si2þ?þik

0 1 Si3 ? Si3þ?þik

?

0 0 0 ? Sik

�������������

�������������
:

Definition 6.2.1 allows us to express RI ’s as polynomials in Sk’s. To do this we
need the following ordering of sets of integers.

Let I ¼ ði1;y; irÞ and J ¼ ð j1;y; jsÞ: We say that IpJ if i1 ¼ j1 þ j2 þ?þ jt1
;

i2 ¼ jt1þ1 þ?þ jt2
;y; is ¼ jts�1þ1 þ?þ js: For example, if Ipð12Þ; then I ¼ ð12Þ

or I ¼ ð3Þ: If Ipð321Þ; then I is equal to one of the sets (321), (51), (33), or (6).

For I ¼ ði1;y; irÞ set lðIÞ ¼ r and SI ¼ Si1 Si2ySir :
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Proposition 6.2.2 (Gelfand et al. [GKLLRT, p. 254]).

RJ ¼
X
IpJ

ð�1ÞlðJÞ�lðIÞ
SI :

Example. R123 ¼ S6 � S2
3 � S1S5 þ S1S2S3:

Definition 6.1.2 implies that RI ¼ Sm for I ¼ fmg and RI ¼ Lk for i1 ¼ ? ¼ ik ¼
1: For each N the homomorphism pN maps RI to the corresponding MacMahon
ribbon Schur function.

In [GKLLRT] similar formulas expressing RI as quasideterminants of matrices
with entries Lk; as well as linear relations with different bases in Symþ defined in

Section 6.1, are given.
Natural bases in algebra Sym of commutative symmetric functions are indexed by

weakly decreasing (or, weakly increasing) finite sequences of integers. Examples are
products of elementary symmetric functions ei1yeik where i1Xi2?Xik and Schur

functions sl where l ¼ ði1;y; ikÞ: The following theorem gives a natural basis in the
algebra of noncommutative symmetric functions. Elements of this basis are indexed
by all finite sequences of integers.

Theorem 6.2.3 (Gelfand et al. [GKLLRT]). The ribbon Schur functions RI form a

linear basis in Sym:

Let p : Sym-Sym be the canonical morphism. Then it is known (see [M]) that the
commutative ribbon Schur functions pðRI Þ are not linearly independent. For
example, commutative ribbon Schur functions defined by sets ðijÞ and ð jiÞ coincide.
This means that the kernel Ker p is nontrivial.

Remark. In the commutative case, ribbon Schur functions pðRIÞ with weakly
decreasing I constitute a basis in the space of symmetric functions. However, this
basis is not frequently used.

The description of the kernel Ker p in terms of ribbon Schur functions is given by
the following theorem.

For an ordered set I is denote by uðIÞ the corresponding unordered set.

Theorem 6.2.4. The kernel of p is linearly generated by the elements

DJ;J 0 ¼
X
IpJ

RI �
X

I 0pJ 0
RI 0

for all J; J 0 such that uðJÞ ¼ uðJ 0Þ:

Example. 1. Let J ¼ ð12Þ; J 0 ¼ ð21Þ: Then DJ;J 0 ¼ ðR12 þ R3Þ � ðR21 þ R3Þ ¼ R12 �
R21 and pðR12Þ ¼ pðR21Þ:
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2. Let J ¼ ð123Þ; J 0 ¼ ð213Þ: Then DJ;J 0 ¼ ðR123 þ R33 þ R15 þ R6Þ � ðR213 þ
R33 þ R24 þ R6Þ ¼ R123 þ R15 � R213 � R24: This shows, in particular, that
pðR123Þ � pðR213Þ ¼ pðR24Þ � pðR15Þa0:

The homological relations for quasideterminants imply the multiplication rule for
the ribbon Schur functions. Let I ¼ ði1;y; irÞ; J ¼ ð j1;y; jsÞ; ipX1; jqX1 for all p; q:

Set I þ J ¼ ði1;y; ir�1; ir þ j1; j2;y; jsÞ and I � J ¼ ði1;y; ir; j1;y; jsÞ:
The following picture illustrates this definition (and explains the origin of the

name ‘‘ribbon Schur functions’’). To each ordered set I ¼ fi1; i2;y; ikg we can
associate a ribbon, i.e., a sequence of square cells on the square rules paper
starting at the square ð0; 0Þ and going right and down, with i1 squares in the first
column, i2 squares in the second column, and so on, see Fig. 1 for the ribbons
corresponding to I ¼ ð2; 1; 3Þ and J ¼ ð3; 1; 2Þ: Then the construction of ribbons
I þ J and I � J has a simple geometric meaning as shown in Fig. 2 for I ¼ ð2; 1; 3Þ and
J ¼ ð3; 1; 2Þ:

Theorem 6.2.5 (Gelfand et al. [GKLLRT]). We have

RI RJ ¼ RIþJ þ RI�J :

The commutative version of this multiplication rule is due to MacMahon.
Naturality of ribbon Schur functions RI can be explained in terms of the following

construction.
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6.3. Algebras with two multiplications

The relations between the functions Lk and the functions Sk can be illuminated by
noting that the ideal Symþ has two natural associative multiplications �1 and �2: In

terms of ribbon Schur functions it can be given as RI �1 RJ ¼ RI :J and RI �2 RJ ¼
RIþJ : We formalize this notion as follows.

Definition 6.3.1. A linear space A with two bilinear products 31 and 32 is called a
biassociative algebra with products 31 and 32 if

ða3ibÞ3jc ¼ a3iðb3jcÞ

for all a; b; cAA and all i; jAf1; 2g:

Note that if the products 31 and 32 in a biassociative algebra A have a common
identity element 1 (i.e., if 13ia ¼ a3i1 ¼ a for all aAA and i ¼ 1; 2; then

a31b ¼ ða321Þ31b ¼ a32ð131bÞ ¼ a32b

for all a; bAA and so 31 ¼ 32:
Note also that if A is a biassociative algebra with two products 31 and 32;

then for r; sAF one can define the linear combination 3r;s ¼ r31 þ s32 by the

formula

a3r;sb ¼ rða31bÞ þ sða32bÞ; a; bAA:

Then A is a biassociative algebra with the products 3r;s and 3t;u for each

r; s; t; uAF :
Jacobson’s discussion of isotopy and homotopy of Jordan algebras (see [Ja2, p.

56,ff]) shows that if A is an associative algebra with the product 3 and 3a for aAA is
defined by the formula

b3ac ¼ b3a3c;

then A is a biassociative algebra with the products 3 and 3a:
We now endow the ideal SymþCSym with the structure of a biassociative algebra

in two different ways. Recall that the nontrivial monomials ðLi1yLirÞ as well as the
nontrivial monomials ðSi1ySirÞ form linear bases in Symþ :

Definition 6.3.2. Define the linear map �1 : Symþ#Symþ-Symþ by

ðLi1yLirÞ �1 ðLj1yLjsÞ ¼ Li1yLir�1
Lirþj1Lj2yLjs
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and the linear map �2 : Symþ#Symþ-Symþ by

ðSi1ySirÞ �2 ðSj1ySjsÞ ¼ Si1ySir�1
Sirþj1 Sj2ySjs :

Write ab ¼ a �0 b for a; bASymþ: Then it is clear that a �i ðb �j cÞ ¼ ða �i bÞ �j c

for all a; b; cASymþ and i; j ¼ 0; 1 or i; j ¼ 0; 2: Thus we have the following

result.

Lemma 6.3.3. Symþ is a biassociative algebra with products �0 and �1 and also a

biassociative algebra with products �0 and �2:

In fact, �0; �1 and �2 are closely related.
The following Lemma is just a restatement of Theorem 6.2.5.

Lemma 6.3.4. �0 ¼ �1 þ �2:

Proof. We have

lð�tÞ�1 ¼ 1 þ
X
i40

ð�1ÞiLit
i

 !�1

¼ 1 þ
X
j40

X
i1þ?þil¼j

ð�1ÞlþjLi1yLil t
j:

Since Li ¼ L1 �1 L1 �1 ? �1 L1; where there are i � 1 occurrences of �1; the

coefficient at t j in lð�tÞ�1 isX
u1;y;uj�1Af0;1g

ð�1ÞkL1 �u1
L1 �u2

? �uj�1
L1;

where k is the number of ut equal to 1.

Since 1 þ
P

Sit
i ¼ lð�tÞ�1 we have

Sj ¼
X

u1;y;uj�1Af0;1g
ð�1ÞkL1 �u1

L1 �u2
? �uj�1

L1:

Therefore Si �0 Sj � Si �1 Sj ¼ Sið�0 � �1ÞSj ¼ Siþj ¼ Si �2 Sj and �2 ¼ �0 � �1; as

required. &

Now let U be the two-dimensional vector space with basis fu0; u1g and

F/US ¼
X
kX0

F/USk

the (graded) free associative algebra on U ; with the homogeneous components

F/USk ¼ U#k:
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We use the products �1 and �2 to define two isomorphisms, f1 and f2; of F/US to
Symþ: Namely, for a basis element ui1yuilAF/USk set

f1 : ui1yuil/L1 �i1 L1 �i2 ? �il L1AðSymþÞlþ1

and

f2 : ui1yuil/L1 �j1 L1 �j2 ? �jl L1AðSymþÞlþ1;

where jt ¼ 0 if it ¼ 0 and jt ¼ 2 if it ¼ 1: Note that f1 and f2 shift degree.
Define the involution y of U by yðu0Þ ¼ u0 and yðu1Þ ¼ u0 � u1: Then y extends to

an automorphism Y of F/US and the restriction Yk of this automorphism to
F/USk is the kth tensor power of y: Clearly f1Y ¼ f2 and so we recover
Proposition 4.13 in [GKLLRT], which describes, in terms of tensor powers, the
relation between the bases of Symþ consisting of nontrivial monomials in Li and of

nontrivial monomials in Si:
Similarly, taking the identity

an�1 þ ð�1Þn
bn�1 þ

Xn�1

k¼1

ð�1Þn�k
ak�1ða þ bÞbn�k�1 ¼ 0;

valid in any associative algebra, setting a ¼ u0 � u1; b ¼ u1; and applying f1; we
obtain the identity

0 ¼
Xn

k¼0

ð�1Þn�kLkSn�k

between the elementary and complete symmetric functions (Proposition 3.3 in
[GKLLRT]). Using Proposition 6.1.2, one can express these identities in terms of
quasideterminants.

6.4. Quasi-Schur functions

Quasi-Schur functions were defined in [GKLLRT]. They are elements not of Sym
but of the free-skew field generated by S1;S2y : Let I ¼ ði1;y; ikÞ:

Definition 6.4.1. Define ŠI by the formula

ŠI ¼ ð�1Þk�1

Si1 Si2þ1 ?

Si1�1 Si2 ? Sikþk�2

?

Si1�kþ1 Si2�kþ2 ? Sik

���������

���������: ð6:4:1Þ

ARTICLE IN PRESS
I. Gelfand et al. / Advances in Mathematics 193 (2005) 56–141114



If I ¼ ði1;y; ikÞ is a partition, i.e., a weakly increasing sequence of nonnegative

sequences, the element ŠI is called a quasi-Schur function. For an arbitrary set I ; ŠI

is called a generalized quasi-Schur function.

In particular, Šfkg ¼ Sk and Šf1kg ¼ Lk; where 1k ¼ ð1y1Þ with k occurrences

of 1.
Definition 6.4.1 is a noncommutative analog of Jacobi–Trudi formula. In the

commutative case, ŠI for a partition I is the ratio of two Schur functions SI=SJ ;

where J ¼ ði1 � 1;y; ik�1 � 1Þ: It shows that in general Š cannot be represented as a
polynomial in Sk:

Remark. The homological relations and the transformation properties of quaside-

terminants imply that any generalized quasi-Schur function ŠI can be expressed as a
rational function in the quasi-Schur functions. For example,

Š42 ¼ � S4

S3 S2

���� ���� ¼ � S4

S2 S3

���� ���� ¼ S3

S2 S3

���� ����S�1
3 S2 ¼ Š33S�1

3 S2:

6.5. Symmetric functions in noncommutative variables

We fix n independent indeterminants x1; x2;y; xn and construct new variables
y1;y; yn which are rational functions in x1;y; xn as follows. Recall that in 5.1 we
defined the Vandermonde quasideterminant

Vðx1;y; xkÞ ¼

xk�1
1 ?

xk�2
1 ? xk�2

k

?

1 ? 1

�����������

�����������
:

Set

y1 ¼ x1;

y2 ¼ Vðx1; x2Þx2Vðx1; x2Þ�1 ¼ ðx2 � x1Þx2ðx2 � x1Þ�1;

?

yn ¼ Vðx1;y; xnÞxnVðx1;y; xnÞ�1:

In the commutative case xi ¼ yi; i ¼ 1;y; n: In the noncommutative case xi and yi

are obviously different.
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Remark. Consider the free skew-field R generated by x1;y; xn: Define on R

differential operators @i by formula @ixj ¼ dij and the Leibniz rule @ið fgÞ ¼
@ið f Þg þ f @iðgÞ; for i ¼ 1;y; n: It easy to see that @iyjadij : However, denote

@ ¼ @1 þ?þ @n: Then

@ðVðx1;y; xkÞÞ ¼ 0; k ¼ 2;y; n

and

@ðyiÞ ¼ @ðxiÞ ¼ 1; i ¼ 1;y; n:

Elementary symmetric functions:

Definition 6.5.1. The functions

L1ðx1;y; xnÞ ¼ y1 þ y2 þ?þ yn;

L2ðx1;y; xnÞ ¼
X
ioj

yjyi;

?

Lnðx1;y; xnÞ ¼ ynyy1

are called elementary symmetric functions in x1;y; xn:

In the commutative case these functions are the standard elementary symmetric
functions of x1;y; xn: By the noncommutative Viète theorem (Theorem 5.7.1),

Liðx1;y; xnÞ ¼ ð�1Þi
ai; i ¼ 1;y; n; where x1;y; xn are the roots of the equation

xn þ a1xn�1 þ?þ an�1x þ an ¼ 0:

This implies

Proposition 6.5.2. The functions Liðx1;y; xnÞ are symmetric in x1;y; xn:

Denote by Symn the subalgebra of the algebra of rational functions in x1;y; xn

generated by Lkðx1;y; xnÞ; k ¼ 1;y; n: Define the surjective homomorphism

f : Sym-Symn ð6:5:1Þ

by setting fðLkÞ ¼ Lkðx1;y; xnÞ:

Theorem 6.5.3. The kernel of f is generated by Lk for k4n:
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Remark. The order of y1;y; yn is essential in the definition of Liðx1;y; xnÞ; i ¼
1;y; n: For example, L2ðx1; x2Þ ¼ y2y1 is symmetric in x1; x2; whereas the product
y1y2 is not symmetric. To see this set D ¼ x2 � x1: The symmetricity in x1; x2 of the

product y1y2 would imply that x1D2 ¼ D2x1:

Complete symmetric functions:

Definition 6.5.4. The functions

Skðx1;y; xnÞ ¼
X

i1pi2p?pik

yi1yyik ; k ¼ 1; 2; 3;y

are called complete symmetric functions in x1;y; xn:

In the commutative case these functions are the standard complete symmetric
functions in x1;y; xn:

Let t be a formal variable commuting with xi; i ¼ 1;y; n: Define the generating
functions

lðtÞ ¼ 1 þ Lðx1;y; xnÞt þ?þ Lnðx1;y; xnÞtn

sðyÞ ¼ 1 þ
X

i

Siðx1;y; xnÞti ¼ lð�tÞ�1:

Proposition 6.5.5. We have

sðtÞlð�tÞ ¼ 1:

In the commutative case, Skðx1;y; xnÞ are the standard complete symmetric
functions.

Proposition 6.5.6. The functions Skðx1;y; xnÞ are symmetric in x1;y; xn:

Proof. Use Proposition 6.5.5, Theorem 6.5.3 and Proposition 6.1.2. &

Remark. The order of elements ys in the definition of Sk is essential: S2ðx1; x2Þ ¼
y2

1 þ y1y2 þ y2
2 is symmetric in x1;y; xn whereas y2

1 þ y2y1 þ y2
2 is not symmetric

(cf. the remark after Theorem 6.5.3).

Ribbon Schur functions: We define ‘‘ribbon Schur functions with arguments’’
RI ðx1;y; xnÞ similarly to Definition 6.2.1, replacing RI with RI ðx1;y; xnÞ and Sk

with Skðx1;y; xnÞ: Evidently, ribbon Schur functions RI ðx1;y; xnÞ are symmetric

in x1;y; xn and form a linear basis in Symn:
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Proposition 6.5.7. We have RI ðx1;y; xnÞ ¼ fðRI Þ; where f is defined by

formula (6.5.1).

To express RI ðx1;y; xnÞ as a sum of monomials in y1;y; yn we need some notation.
Let w ¼ ai1yaik be a word in ordered letters a1o?oan: An integer m is called a

descent of w if 1pmpk � 1 and im4imþ1: Let MðwÞ be the set of all descents of w:
Let J ¼ ð ji;y; jkÞ be a set of positive integers.

Theorem 6.5.8.

RJðx1;y; xnÞ ¼
X

yi1yyim ; ð6:5:2Þ

where the sum is taken over all words w ¼ yi1yyim such that MðwÞ ¼ f j1; j1 þ
j2;y; j1 þ j2 þ?þ jk�1g:

The proof of the theorem was essentially given in [GKLLRT, Section VII].

6.6. Main theorem for noncommutative symmetric functions

In the commutative case the classical main theorem of the theory of symmetric
functions says that every symmetric polynomial of n variables is a polynomial of
(elementary) symmetric functions of these variables. Its analogue for a noncommu-
tative case is given by the following theorem. Denote Lkðx1;y; xnÞ as LkðX Þ; k ¼
1;y; n:

Recall that in the previous section we defined the elements yk by the formulas

y1 ¼ x1; yk ¼ Vðx1;y; xkÞxkVðx1;y; xkÞ�1 for k ¼ 2;y; n:

Theorem 6.6.1 (Wilson [Wi]). Let a polynomial Pðy1;y; ynÞ over Q be symmetric in

x1;y; xn: Then Pðy1;y; ynÞ ¼ QðL1ðXÞ;y;LnðXÞÞ; where Q is a noncommutative

polynomial over Q:

Remark. Recall that Pðy1;y; ynÞ is a polynomial in yi and not in xi: We can express
this by saying that in the natural variables xi; noncommutative symmetric
polynomials are not polynomials but rational functions.

Corollary 6.6.2. A polynomial Pðy1;y; ynÞ with coefficients in Q is symmetric in

x1;y; xn if and only if Pðy1;y; ynÞ; viewed as a rational function of x1;y;xn; is a

linear combination of RJðx1;y; xnÞ:

6.7. Quasi-Plücker coordinates of Vandermonde matrices and symmetric functions

Here we study right quasi-Plücker coordinates r
i1;y;in�1

ij ðVnÞ; where Vn ¼ ðxi
jÞ;

iAZ; j ¼ 1;y; n; is the Vandermonde matrix, xj; j ¼ 1;y; n are noncommuting
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variables. The matrix Vn has n columns and infinitely many rows. The following
proposition shows the importance of such coordinates.

Proposition 6.7.1. We have

r0;1;y;n�2
nþk�1;n�1ðVnÞ ¼ Skðx1;y; xnÞ; k ¼ 0; 1; 2;y;

r
0;1;y;n�k�1;n�kþ1;y;n�1
n;n�k ðVnÞ ¼ ð�1Þk�1Lkðx1;y; xnÞ; k ¼ 0; 1;y; n:

Examples.

Skðx1; x2Þ ¼
xkþ1

1

1 1

������
������ x1

1 1

�����
�����
�1

¼ ðxkþ1
2 � xkþ1

1 Þðx2 � x1Þ�1

¼ yk
2 þ yk�1

2 y1 þ?þ y2yk�1
1 þ yk

1 ;

where y1 ¼ x1; y2 ¼ ðx2 � x1Þx2ðx2 � x1Þ�1;

L1ðx1; x2Þ ¼
x2

1

1 1

������
������ x1

1 1

�����
�����
�1

¼ ðx2
2 � x2

1Þðx2 � x1Þ�1 ¼ y1 þ y2;

L2ðx1; x2Þ ¼ � x2
1

x1 x2

������
������
�1

x1 x2

1

�����
�����
�1

¼ ðx2
2 � x1x2Þð1 � x�1

1 x2Þ�1 ¼ y2y1:

Remark. Formulas for Sk in Proposition 6.7.1 are valid for all kAZ:

An important ‘‘periodicity’’ property of quasi-Plücker coordinates of Vander-
monde matrices is given by the following proposition.

Proposition 6.7.2. For any kAZ we have

r
i1;y;in�1

ij ðVnÞ ¼ r
i1þk;y;in�1þk
iþk; jþk ðVnÞ:

Proposition 6.7.1 can be generalized as follows. Recall that in 6.4 we defined
generalized quasi-Schur functions. Let I ¼ fi1; i2;y; img:
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Proposition 6.7.3. Let I ¼ fi1; i2;y; img and i1Xi2X?Xim: Set J ¼ f0; 1;y;
n � m � 1; n � m þ i1;y; n � 2 þ im�1g: Then

rJ
n�1þi1;n�mðVnÞ ¼ ŠI :

7. Universal quadratic algebras associated with pseudo-roots of noncommutative

polynomials and noncommutative differential polynomials

7.1. Pseudo-roots of noncommutative polynomials

During the last years the authors introduced and studied universal algebras
associated with pseudo-roots of noncommutative polynomials. The results appeared
in [GRW,GGR,GGRSW].

Let C be an algebra with unit and PðtÞAC½t� be a polynomial (where t is a formal
variable commuting with elements of C). We say that an element cAC is a pseudo-

root of PðtÞ if there exist polynomials LcðtÞ;RcðtÞAC½t� such that PðtÞ ¼ LcðtÞðt �
cÞRcðtÞ: If PðtÞ ¼ a0tn þ a1tn�1 þ?þ an�1t þ an and c is a pseudo-root of PðtÞ with
RcðtÞ ¼ 1; then

a0cn þ a1cn�1 þ?þ an�1c þ an ¼ 0;

i.e., c is a root of the polynomial PðxÞ ¼ a0xn þ a1xn�1 þ?þ an�1x þ an (where x is
a noncommuting variable). Our theory shows that the analysis of noncommutative
polynomials is impossible without studying pseudo-roots.

Let x1;y; xn be roots of a generic monic polynomial PðxÞ ¼ xn þ a1xn�1 þ?þ
an over an algebra C: There are two important classical problems: (a) to express
the coefficients a1;y; an via the roots, (b) to determine all factorizations of PðxÞ;
or PðtÞ:

When C is a division ring, the first problem was solved in [GR3,GR4] using the
theory of quasideterminants; the solution is presented in Section 5. Let Vðxi1 ;y; xikÞ
be the Vandermonde quasideterminant corresponding to the sequence xi1 ;y; xik :
For an ordering fi1;y; ing of f1;y; ng; we constructed the elements

x|;i1 ¼ xi1 ;

xfi1;i2;y;ik�1g;ik ¼ Vðxi1 ;y; xikÞxik Vðxi1 ;y; xikÞ
�1; k ¼ 2;y; n;

in C such that for every m ¼ 1;y; n;

ð�1Þm
am ¼

X
j14j24?jm

yj1 yj2yyjm ; ð7:1:1Þ

where y1 ¼ xi1 ; yk ¼ xfi1;y;ik�1g;ik ; k ¼ 2;y; n:
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It is surprising that the left-hand side in formula (7.1.1) does not depend on the
ordering of f1;y; ng whereas the right-hand side a priori does depend on it. The
independence of the right-hand side in (7.1.1) on the ordering of f1;y; ng was a key
point in the theory of noncommutative symmetric functions developed in
[GR3,GR4], see Section 6 of the present article.

The element xfi1;y;ik�1g;ik has an interesting structure. As we have already

mentioned, it is symmetric in xi1 ;y; xik�1
: Next, it is a rational function in

xi1 ;y; xik containing, in the general case, k � 1 inversions. In other words,

xfi1;y;ik�1g;ik is a rational expression of height k � 1:

Set Ak ¼ fi1;y; ik�1g for k ¼ 2;y; n: Recall that formulas (7.1.1) are equivalent
to the decomposition

PðtÞ ¼ ðt � xAn;inÞðt � xAn�1;in�1
Þyðt � xi1Þ: ð7:1:2Þ

This formula shows that the elements xA;i are pseudo-roots of PðtÞ; and in the

general case the polynomial PðtÞ has at least n2n�1 different pseudo-roots. We study all
these pseudo-roots together by constructing the universal algebra of pseudo-roots Qn:

7.2. Universal algebra of pseudo-roots

It is easy to see that the elements xA;i; ieA; satisfy the following simple relations:

xA,fig; j þ xA;i ¼ xA,f jg;i þ xA; j ; ð7:2:1aÞ

xA,fig; j � xA;i ¼ xA,f jg;i � xA; j ; ð7:2:1bÞ

for all ADf1;y; ng; i; jeA:
In order to avoid inversions and to make our construction independent of the

algebra C; we define the universal algebra of pseudo-roots Qn over a field F to be the
algebra with generators zA;i; ADf1;y; ng; ieA; and relations corresponding to 7.2.1

(with x replaced by z).
Each algebra Qn has a natural derivation @ : Qn-Qn; @ðzA;iÞ ¼ 1 and a natural

anti-involution y : Qn-Qn; yðzA;iÞ ¼ zC;i where C ¼ f1;y; ng\A\fig:
The algebra contains, as a subalgebra, the free associative algebra generated by the

zi ¼ z|;i; i ¼ 1;y; n: The algebra Qn also admits a natural homomorphism an to

the skew-field generated by elements z1;y; zn: Namely, let A ¼ fi1;y; ikg: Set

anðzA;iÞ ¼

zk
i1

? zk
ik

zk�1
i1

? zk�1
ik

zk�1
i

?

1 ? 1 1

�����������

�����������
zi

zk
i1

? zk
ik

zk�1
i1

? zk�1
ik

zk�1
i

?

1 ? 1 1

�����������

�����������

�1

:

Conjecture 7.2.1. The homomorphism an is a monomorphism.
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We can prove this conjecture for n ¼ 2; 3:
The algebra Qn admits a natural commutative specialization pn : Qn-F ½t1;y; tn�

given by

pnðzA;iÞ ¼ ti; i ¼ 1;y; n: ð7:2:2Þ

In particular, for each ieA; the image of zA;i � zi under pn equals zero.

To study the kernel of pn further, it is convenient to define, for each pair

A;BDf1;y; ng; with A-B ¼ | the element zA;BAQn by the recurrence formula

z|;| ¼ 0;

zA,fig;B � zA;B,fig ¼ zA;B for ieA;B:

One can easily see that when B contains more than one element, the element zA;B is

‘‘invisible’’ in the commutative case, i.e., pnðzA;BÞ ¼ 0:
In [GRW] it was proved that

zA;i � zi ¼
X

|aCDA

z|;C,fig:

The terms on the right-hand side in (7.2.2) measure the ‘‘noncommutativity’’ of zA;i:
Moreover, in a sense, the ‘‘degree of noncommutativity’’ carried by z|;B depends on

the size of B: the greater jBj; the more ‘‘noncommutative’’ the element by z|;B is.

7.3. Bases in the algebra Qn

The algebra Qn has a natural graded structure Qn ¼
P

lX0 Qn;l where Qn;l is the

span of all products of l generators zA;i:
One can see that elements zA;| and, similarly, the elements z|;A; for all

ADf1;y; ng; Aa|; constitute a basis in the subspace of Qn;1: These elements

satisfy simple quadratic relations.
Our study of Qn relies on the construction of a basis in Qn; which is a hard

combinatorial problem.

For ADf1;y; ng let minðAÞ denote the smallest element of A: Then set Að0Þ ¼ A;

Að1Þ ¼ A\fminðAÞg; Aðiþ1Þ ¼ ðAðiÞÞð1Þ: Set rA ¼ z|;A:

Theorem 7.3.1 (see Gelfand et al. [GRW]). The set of all monomials

r
A

ð0Þ
1

r
A

ð1Þ
1

yr
A

ð j1Þ
1

r
A

ð0Þ
2

r
A

ð1Þ
2

yr
A

ð j2Þ
2

yr
A

ð0Þ
l

r
A

ð1Þ
l

yr
A

ð jl Þ
l

;

where A1;y;AlDf1;y; ng and for each 1pipl � 1; either Aiþ1D/ Ai or

jAiþ1jajAij � ji � 1; is a basis in Qn:
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Remark. It would be interesting to study in details combinatorial properties
of the basis and to give constructions of similar bases in Qn using different
techniques including noncommutative Gröbner bases and Bergman’s Diamond
lemma.

7.4. Algebra of noncommutative symmetric polynomials as a subalgebra in Qn

For each ordering I ¼ ði1;y; inÞ of f1;y; ng; there is a natural free subalgebra
Qn;ICQn generated by fzfi1;y;ikg;| j 1pkpng: Using the basis theorem in [GRW], we

can describe arbitrary intersections of subalgebras Qn;I : In particular, we can prove

the following theorem. Let Sn be a subalgebra in Qn generated by all coefficients am

(see formula (7.1.1)). One can identify Sn with the algebra Symn of noncommutative
symmetric functions in x1;y; xn:

Theorem 7.4.1 (see Gelfand et al. [GRW])). The intersection of all subalgebras Qn;I

coincides with algebra Sn:

This is a purely noncommutative phenomenon: under the commutative
specialization pn; all algebras Qn;I map to the algebra of all polynomials and

algebra Sn maps to the algebra of symmetric functions.

7.5. The dual algebra Q!
n

The definition of the dual quadratic algebra and of Koszul quadratic algebras can
be found, e.g., in [Lö].

Recall, that the quadratic algebra Qn has a natural graded structure Qn ¼P
iX0 Qn;i where Qn;i is the span of all products of i generators. As usual, we denote

the Hilbert series of Qn by HðQn; tÞ ¼
P

iX0 dimðQn;iÞti:

In [GGRSW] we computed the Hilbert series of Qn and of its dual quadratic

algebra Q!
n: In particular, the following result was proved.

Theorem 7.5.1. We have

HðQn; tÞ ¼
1 � t

1 � tð2 � tÞn;

HðQ!
n; tÞ ¼

1 þ tð2 þ tÞn

1 þ t
:

In particular, since HðQ!
n; tÞ is a polynomial in t; the dual algebra Q!

n is finite

dimensional. Similarly to Qn; it also has a rich and interesting structure.
Theorem 7.5.1 shows that

HðQn; tÞ � HðQ!
n;�tÞ ¼ 1:
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This also follows from the koszulity of Qn; which was recently proved by Serconek
and Wilson [SW].

7.6. Quotient algebras of Qn

There are at least two reasons to study quotient algebras of Qn: The
noncommutative nature of Qn can be studied by looking at quotients of Qn by
ideals generated by some z|;A: These quotients are ‘‘more commutative’’ than Qn:

For example, the quotient of Qn by the ideal generated by all z|;A with jAjX2 is

isomorphic to the algebra of commutative polynomials in n variables.
To consider more refined cases, we need to turn to a ‘‘noncommutative

combinatorial topology’’. In this approach the algebra Qn corresponds to an n-
simplex Dn; and we consider quotients of Qn by ideals generated by some z|;A
corresponding to subcomplexes of Dn: In [GGR] we described generators and
relations for those quotients. Special attention was given to the quotients
of Qn corresponding to one-dimensional subcomplexes of Dn (they are close to
algebras of commutative polynomials). However, we need to study other
quotient algebras of this type and to be able to ‘‘glue’’ together such quotient
algebras. This will lead to a construction of a ‘‘noncommutative combinatorial
topology’’.

Another interesting class of quotients of Qn consists of algebras corresponding to
special types of polynomials (such as xn ¼ 0 or polynomials with multiple roots).
Here is an example.

Example. Let F be a field. We consider quotients of the F -algebra Q2: The algebra

Q2 itself is generated by z1; z2; z1;2; z2;1: It corresponds to a polynomial PðtÞ ¼
t2 � pt þ q with p ¼ z1 þ z1;2 ¼ z2 þ z2;1; q ¼ z1;2z1 ¼ z2;1z2:

There is an ‘‘invisible element’’ z|;12 ¼ z1;2 � z2 ¼ z2;1 � z1: This element satisfies

the relation z|;12ðz1 � z2Þ ¼ z1z2 � z2z1:

There are three quotient algebras corresponding to special cases of PðtÞ:
(i) The algebra corresponding to the polynomial t2 is Q2=ðp; qÞ: This algebra is

isomorphic to F/z1; z2S=ðz2
1; z2

2Þ:
(ii) The algebra corresponding to a polynomial with multiple roots is Q2=ðz1 � z2Þ:

It is isomorphic to the free algebra with generators z1 and z1;2:
(iii) The algebra Q2=ðz|;12Þ is isomorphic to the algebra of commutative

polynomials in two variables.

Another class of quotient algebras of Qn was introduced in [GGR].

7.7. Quadratic algebras associated with differential noncommutative polynomials

In [GRW] we also constructed, similarly to algebras Qn; the universal algebras of
pseudo-roots of noncommutative differential polynomials.
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Let C be an algebra over a field F : Recall that a derivation D of C is an F -linear
map D : C-C such that DðabÞ ¼ DðaÞb þ aDðbÞ: Any element aAC acts on C by
the multiplication from the left. It is obvious that the commutator ½D; a� ¼ Da � aD

acts on C as the left multiplication by DðaÞ: Also, any polynomial P ¼ PðDÞ ¼
a0Dn þ a1Dn�1 þ?þ an; aiAC for i ¼ 0; 1;y; n acts on C by the formula

PðDÞðfÞ ¼ a0DnðfÞ þ a1Dn�1ðfÞ þ?þ an�1DðfÞ þ anf:

We say that an element cAC is a pseudo-root of PðDÞ if there exist polynomials
LcðDÞ and RcðDÞ with coefficients in C such that PðDÞ ¼ LcðDÞðD � cÞRcðDÞ
(taking into account the commutation rule 7.7.1). We say that c is a root of PðDÞ
if RcðDÞ ¼ 1:

Suppose that a0 ¼ 1 and the differential polynomial PðDÞ has n different roots
f1;y; fnAC: Following [EGR], for any ordering ði1;y; inÞ of f1;y; ng; in [GRW]
we constructed, for a generic P; pseudo-roots fi1;i2 ;y; fi1;y;in�1;in such that

PðDÞ ¼ ðD � fi1;y;in�1;inÞyðD � fi1;i2ÞðD � fi1Þ:

For k ¼ 2;y; n the element fi1;y;ik�1;ik does not depend on the order of elements

ði1;y; ik�1Þ:
Set f|;i ¼ fi: It was proved in [GRW] that for any ACf1;y; ng such that

jAjon � 1; and for any i; jeA we have

fA,i; j þ fA;i ¼ fA,j;i þ fA; j; ð7:7:1aÞ

fA,i; j fA;i � Dð fA;iÞ ¼ fA,j;i fA; j � Dð fA; jÞ: ð7:7:1bÞ

Based on these formulas one can define universal algebras DQn of pseudo-roots
of noncommutative differential polynomials. They are defined by elements fA;i for

ieA satisfying relations 7.7.1. The theory of algebras DQn seems to be useful in
the study of noncommutative integrable systems.

8. Noncommutative traces, determinants and eigenvalues

In this section we discuss noncommutative traces, determinants and eigenvalues.
Our approach to noncommutative determinants in this section is different from our
approach described in Section 3.

Classical (commutative) determinants play a key role in representation theory.
Frobenius developed his theory of group characters by studying factorizations of group
determinants (see [L]). Therefore, one cannot start a noncommutative representation
theory without looking at possible definition of noncommutative determinants and
traces. The definition of a noncommutative determinant given in this section is different
from the definition given in Section 3. However, for matrices over commutative
algebras, quantum and Capelli matrices both approach give the same results.
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8.1. Determinants and cyclic vectors

Let R be an algebra with unit and A : Rm-Rm a linear map of right vector spaces,

A vector vARm is an A-cyclic vector if v;Av;y;Am�1v is a basis in Rm regarded as a
right R-module. In this case there exist Liðv;AÞAR; i ¼ 1;y;m; such that

ð�1Þm
vLmðv;AÞ þ ð�1Þm�1ðAvÞLm�1ðv;AÞ þ?� ðAm�1vÞL1ðv;AÞ þ Amv ¼ 0:

Definition 8.1.1. We call Lmðv;AÞ the determinant of ðv;AÞ and L1ðv;AÞ the
trace of ðv;AÞ:

We may express Liðv;AÞAR; i ¼ 1;y;m; as quasi-Plücker coordinates of the
m � ðm þ 1Þ matrix with columns v;Av;y;Anv (following [GR4]).

In the basis v;Av;y;Am�1 the map A is represented by the Frobenius matrix Av

with the last column equal to ðð�1ÞmLmðv;AÞ;y;�L1ðv;AÞÞT : From Theorem 3.1.3
it follows that if determinants of Av are defined, then they coincide up to a sign with
LmðV ;AÞ: This justifies our definition.

Also, when R is a commutative algebra, Lmðv;AÞ is the determinant of A and
L1ðv;AÞ is the trace of A:

When R is noncommutative, the expressions Liðv;AÞAR; i ¼ 1;y;m; depend on
vector v: However, they provide some information about A: For example, the
following statement is true.

Proposition 8.1.2. If the determinant Lmðv;AÞ equals zero, then the map A is not

invertible.

Definition 8.1.1 of noncommutative determinants and traces was essentially used
in [GKLLRT] for linear maps given by matrices A ¼ ðaijÞ; i; j ¼ 1;y;m and unit

vectors es; s ¼ 1;y;m: In this case Liðes;AÞ are quasi-Plücker coordinates of the
corresponding Krylov matrix KsðAÞ: Here (see [G]) KsðAÞ is the matrix ðbijÞ;
i ¼ m;m � 1;y; 1; 0; j ¼ 1;y;m; where bij is the ðsjÞ-entry of Ai:

Example. Let A ¼ ðaijÞ be an m � m-matrix and v ¼ e1 ¼ ð1; 0;y; 0ÞT : Denote by

a
ðkÞ
ij the corresponding entries of Ak: Then

Lmðv;AÞ ¼ ð�1Þm�1

a
ðmÞ
12 ? a

ðmÞ
1m

a
ðm�1Þ
11 a

ðm�1Þ
12 ? a

ðm�1Þ
1m

? ?

a11 a12 ? a1m

������������

������������
For m ¼ 2 the ‘‘noncommutative trace’’ L1 equals a11 þ a12a22a�1

12 and the

‘‘noncommutative determinant’’ L2 equals a12a22a�1
12 a11 � a12a21:
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It was shown in [GKLLRT] that if A is a quantum matrix, then Lm equals detq A

and A is a Capelli matrix, then Lm equals the Capelli determinant.
A construction of a noncommutative determinant and a noncommutative trace in

terms of cyclic vectors in a special case was used in [Ki].
One can view the elements Liðv;AÞ as elementary symmetric functions of

‘‘eigenvalues’’ of A:
Following Section 6 we introduce complete symmetric functions Siðv;AÞ; i ¼

1; 2;y; of ‘‘eigenvalues’’ of A as follows. Let t be a formal commutative variable. Set
lðtÞ ¼ 1 þ L1ðv;AÞt þ?þ Lmðv;AÞtm and define the elements Siðv;AÞ by the
formulas

sðtÞ :¼ 1 þ
X
k40

Sktk ¼ lð�tÞ�1:

Recall that in Section 6 we introduced ribbon Schur functions and that R1kl is the
ribbon Schur function corresponding to the hook with k vertical and l horizontal
boxes. In particular, Lk ¼ R1k ; Sl ¼ Rl :

Let A : Rm-Rm be a linear map of right linear spaces.

Proposition 8.1.3. For kX0:

Amþkv ¼ ð�1Þm�1
vR1m�1ðkþ1Þ þ ð�1Þm�2ðAvðR1m�2ðkþ1ÞÞ þ?þ ðAm�1vÞRkþ1Þ:

Let A ¼ diagðx1;y; xmÞ: In the general case for a cyclic vector one can take

v ¼ ð1;y; 1ÞT : In this case, the following two results hold.

Proposition 8.1.4. For k ¼ 1;y;m

Lkðv;AÞ

¼
1 ? y xm�1

m

?

1 ? x1 ? xm�1
1

��������
��������
�1

�
1 ? xm�k�1

m xm�kþ1
m ?

?

1 ? xm�k�1
1 xm�kþ1

1 ? xm
1

��������
��������:

Proposition 8.1.5. For any k40

Skðv;AÞ ¼
1 ?

?

1 ? xm�1
1

��������
��������
�1

�
1 ? xm�2

m

?

1 ? xm�2
1 xmþk�1

1

��������
��������:

Note that formulas for Sk look somewhat simpler than formulas for Lk:
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8.2. Noncommutative determinants and noncommutative eigenvalues

One can also express Liðv;AÞAR in terms of left eigenvalues of A:
Let a linear map A : Rm-Rm of the right vector spaces is represented by the

matrix ðaijÞ:

Definition 8.2.1. A nonzero row-vector u ¼ ðu1;y; umÞ is a left eigenvector of A if
there exists lAR such that uA ¼ lu:

We call l a left eigenvalue of A corresponding to vector u: Note, that l is the

eigenvalue of A corresponding to a left eigenvector u then, for each aAR; ala�1 is the

eigenvalue corresponding to the left eigenvector au: Indeed, ðauÞA ¼ ala�1ðauÞ:
For a row vector u ¼ ðu1;y; umÞ and a column vector v ¼ ðv1;y; vmÞT denote by

/u; vS the inner product /u; vS ¼ u1v1 þyumvm:

Proposition 8.2.2. Suppose that u ¼ ðu1;y; umÞ is a left eigenvector of A with the

eigenvalue l; v ¼ ðv1;y; vmÞT
is a cyclic vector of A; and /u; vS ¼ 1: Then the

eigenvalue l satisfies the equation

ð�1ÞmLmðv;AÞ þ ð�1Þm�1lLm�1ðv;AÞ þ?� lm�1L1ðv;AÞ þ lm ¼ 0: ð8:2:1Þ

Eq. (8.2.1) and the corresponding Viète theorem (see Section 3) show that if the

map A : Rm-Rm has left eigenvectors u1;y; um with corresponding eigenvalues

l1;y; lm such that /ui; vS ¼ 1 for i ¼ 1;y;m and any submatrix of the

Vandermonde matrix ðlj
iÞ is invertible, then all Liðv;AÞ can be expressed in terms

of l1;y; lm as ‘‘noncommutative elementary symmetric functions’’ by formulas
similar to those in Definition 6.5.1.

8.3. Multiplicativity of determinants

In the commutative case the multiplicativity of determinants and the additivity of
traces are related to computations of determinants and traces with diagonal block-
matrices. In the noncommutative case we suggest to consider the following
construction.

Let R be an algebra with a unit. Let A : Rm-Rm and D : Rn-Rn be linear maps of
right vector spaces, vARm an A-cyclic vector and wARn a D-cyclic vector.

There exist Liðw;DÞAR; i ¼ 1;y; n; such that

ð�1Þn
vLnðw;DÞ þ ð�1Þn�1ðDwÞLn�1ðw;DÞ þ?� ðDm�1vÞL1ðw;DÞ þ Dnw ¼ 0:

Denote also by Siðw;DÞ; i ¼ 1; 2;y; the corresponding complete symmetric
functions.
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The matrix C ¼ A
0

0
D

� �
acts on Rmþn: Suppose that the vector u ¼ v

w

� �
is a cyclic

vector for matrix C: We want to express Liðu;CÞ; i ¼ 1;y;m þ n in terms of
Ljðv;AÞ; Skðv;AÞ; Lpðw;DÞ; and Sqðw;DÞ:

Denote, for brevity, Ljðv;AÞ ¼ Lj; Skðv;AÞ ¼ Sk; Lpðw;DÞ ¼ Lp
0; Sqðw;DÞ ¼ Sq

0:
For two sets of variables a ¼ fa1; a2;y; g and b ¼ fb1; b2;y; g introduce the

following ðm þ nÞ � ðm þ nÞ-matrix Mðm; n; a; bÞ:

1 a1 a2 ? ? ? am�1 ? amþn�1

0 1 a1 a2 ? ? am�1 ? amþn�2

?

0 0 0 ? ? ? 1 ? am

1 b1 b2 ? bn�1 ? ? ? bmþn�1

0 1 b1 b2 ? ? ? ? bmþn�2

?

0 0 0 ? 1 b1 ? ? bn

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
:

Proposition 8.3.1. For any j ¼ 2;y;m þ n we have

jMðm; n; a; bÞj1j ¼ �jMðm; n; a; bÞjmþ1; j :

The elements Siðu;CÞ; i ¼ 1; 2;y; can be computed as follows. Denote by
Nkðm; n; a; bÞ the matrix obtained from M by replacing its last column by the
following column:

ðamþnþk�1; amþnþk�2;y; anþk�1; bmþnþk�1; bmþnþk�2;y; bmþk�1ÞT :

Set a ¼ f�S1;S2;y; ð�1Þk
Sk;yg; a0 ¼ f�S0

1;S0
2;y; ð�1Þk

S0
k;yg:

Theorem 8.3.2. For k ¼ 1; 2;y we have

Skðu;CÞ ¼ jMðm; n; a; a0Þj�1
1mþn � jNkðm; n; a; a0Þj1mþn:

Example. For m ¼ 3; n ¼ 2 and k ¼ 1; 2;y : Then

Skðu;CÞ ¼

ð�1Þk�1

1 �S1 S2 �S3 S4

0 1 �S1 S2 �S3

0 0 1 �S1 S2

1 �S0
1 S0

2 �S3
0 S4

0

0 1 �S0
1 S0

2 �S3
0

������������

������������

�1

15

1 �S1 S2 �S3 S4þk

0 1 �S1 S2 �S3þk

0 0 1 �S1 S2þk

1 �S0
1 S0

2 �S3
0 S0

4þk

0 1 �S0
1 S0

2 �S0
3þk

������������

������������
15

:

For n ¼ 1 denote L1ðDÞ ¼ S1ðDÞ by l0:
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Proposition 8.3.3. If n ¼ 1; then for k ¼ 1; 2;y we have

Skðu;CÞ ¼ Skðv;AÞ þ Sk�1ðv;AÞjMðm; n; a; a0Þj�1
1mþnl

0jMðm; n; a; a0Þj1mþnþ1:

Note that

Lmþ1ðu;CÞ ¼ jMðm; n; a; a0Þj�1
1mþnl

0jMðm; n; a; a0Þj1mþnþ1Lmðv;AÞ;

i.e. the ‘‘determinant’’ of the diagonal matrix equals the product of two
‘‘determinants’’.

9. Some applications

In this section we mainly present some results from [GR1,GR2,GR4].

9.1. Continued fractions and almost triangular matrices

Consider an infinite matrix A over a skew-field:

A ¼

a11 a12 a13 ? a1n?

�1 a22 a23 ? a2n?

0 �1 a33 ? a3n?

0 0 �1 ? ?

0BBB@
1CCCA:

It was pointed out in [GR1,GR2] that the quasideterminant jAj11 can be written as

a generalized continued fraction

jAj11 ¼ a11 þ
X
j1a1

a1j1

1

a2j1 þ
P

j2a1; j1
a2j2

1
a3j2

þ?

:

Let

An ¼

a11 a12 ? a1n

�1 a22 ? a2n

0 �1 ? a3n

?

? 0 �1 ann

0BBBBBB@

1CCCCCCA:

The following proposition was formulated in [GR1,GR2].

ARTICLE IN PRESS
I. Gelfand et al. / Advances in Mathematics 193 (2005) 56–141130



Proposition 9.1.1. jAnj11 ¼ PnQ�1
n ; where

Pn ¼
X

1pj1o?ojkon

a1j1 aj1þ1; j2 aj2þ1; j3yajkþ1;n; ð9:1:1Þ

Qn ¼
X

2pj1o?ojkon

a2j1 aj1þ1; j2 aj2þ1; j3?ajkþ1;n: ð9:1:2Þ

Proof. From the homological relations one has

jAnj11jA1n
n j�1

21 ¼ �jAnj1njA11
n j�1

2n :

We will apply formula (1.2.2) to compute jAnj1n; jA11
n j2n; and jA1n

n j21: It is easy to see

that jA1n
n j21 ¼ �1: To compute the two other quasideterminants, we have to invert

triangular matrices. Setting Pn ¼ jAnj1n and Qn ¼ jA11
n j2n we arrive at formulas

(9.1.1), (9.1.2). &

Remark. In the commutative case Proposition 9.1.1 is well known. In this case

Pn ¼ jAnj1n ¼ ð�1Þn det An and Qn ¼ ð�1Þn�1 det A11
n :

Formulas (9.1.1), (9.1.2) imply the following result (see [GR1,GR2]).

Corollary 9.1.2. The polynomials Pk for kX0 and Qk for kX1 are related by the

formulas

Pk ¼
Xk�1

s¼0

Psasþ1;k; P0 ¼ 1; ð9:1:3Þ

Qk ¼
Xk�1

s¼1

Qsasþ1;k; Q1 ¼ 1: ð9:1:4Þ

Corollary 9.1.3. Suppose that for any iaj and any p; q the elements of the matrix A

satisfy the conditions

aijapq ¼ apqaij ;

ajjaii � aiiajj ¼ aij ; 1piojpn:

Then

Pn ¼ jAnj1n ¼ annan�1n�1ya11: ð9:1:5Þ

The proof follows from (9.1.3).
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Corollary 9.1.4 (Gelfand and Retakh [GR1,GR2]). For the Jacoby matrix

A ¼
a1 1 0 ?

�1 a2 1

0 �1 a3 ?

0B@
1CA

we have

jAj11 ¼ a1 þ
1

a2 þ 1
a3þ?

;

and

P0 ¼ 1; P1 ¼ a1; Pk ¼ Pk�1ak þ Pk�2; for kX2;

Q1 ¼ 1; Q2 ¼ a2; Qk ¼ Qkþ1ak þ Qk�2; for kX3:

In this case Pk is a polynomial in a1;y; ak and Qk is a polynomial in a2;y; ak:

9.2. Continued fractions and formal series

In the notation of the previous subsection the infinite continued fraction jAj11 may

be written as a ratio of formal series in the letters aij and a�1
ii : Namely, set

PN ¼
X

1pj1oj2?ojkor�1
r¼1;2;3;y

a1j1 aj1þ1j2yajkþ1ra
�1
rr �y � a�1

11

¼ 1 þ a12a�1
22 a�1

11 þ a13a�1
33 a�1

22 a�1
11 þ a11a23a�1

33 a�1
22 a�1

11 þ?;

and

QN ¼ a�1
11 þ

X
2pj1oj2?ojkor�1

r¼2;3y

a2j1 aj1þ1j2yajkþ1ra
�1
rr �y � a�1

11

¼ a�1
11 þ a23a�1

33 a�1
22 a�1

11 þ a24a�1
44 a�1

33 a�1
22 a�1

11 þ?:

Since each monomial appears in these sums at most once, these are well-defined
formal series.

The following theorem was proved in [PPR]. Another proof was given in [GR4].

Theorem 9.2.1. We have

jAj11 ¼ PN � Q�1
N
:
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Proof. Set bij ¼ aija
�1
jj and consider matrix B ¼ ðbijÞ; i; j ¼ 1; 2; 3;y : According to

a property of quasideterminants jAj11 ¼ jBj11a11: Applying the noncommutative

Sylvester theorem to B with matrix ðbijÞ; i; jX3; as the pivot, we have

jBj11 ¼ 1 þ jB21j12jB11j�1
22 a�1

11 :

Therefore

jAj11 ¼ ða11jB11j22a�1
11 þ jB21j12a�1

11 ÞðjB11j22a�1
11 Þ

�1: ð9:2:1Þ

By [GKLLRT], Proposition 2.4, the first factor in (9.2.1) equals PN; and the second

equals Q�1
N
: &

9.3. Noncommutative Rogers–Ramanujan continued fraction

The following application of Theorem 9.2.1 to Rogers–Ramanujan continued
fraction was given in [PPR]. Consider a continued fraction with two formal variables
x and y:

Aðx; yÞ ¼ 1

1 þ x 1

1þx
1

1þ? y
y
:

It is easy to see that

Aðx; yÞ ¼

1 x �
�y 1 x � 0

�y 1 x �
1 �

0 & & �

�����������

�����������

�1

11

¼

1 x 0

�1 y�1 xy�1

0 �1 y�1 xy�1

�1 y�1 &

���������

���������
11

Theorem 9.2.1 implies the following result.

Corollary 9.3.1. Aðx; yÞ ¼ P � Q�1; where Q ¼ yPy�1 and

P ¼ 1 þ
X
kX1

n1;y;nkX1

y�n1 xy�n2 xy y�nk xykþn1þn2þ?þnk :

Following [PPR], let us assume that xy ¼ qyx; where q commutes with x and y:
Set z ¼ yx: Then Corollary 9.3.1 implies Rogers–Ramanujan continued fraction
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identity

Aðx; yÞ ¼ 1

1 þ qz

1þ q2z
1þ?

¼
1 þ

P
kX1

qkðkþ1Þ
ð1�qÞyð1�qkÞ zk

1 þ
P

kX1
qk2

ð1�qÞyð1�qkÞ zk

:

9.4. Quasideterminants and characteristic functions of graphs

Let A ¼ ðaijÞ; i; j ¼ 1;y; n; where aij are formal noncommuting variables. Fix

p; qAf1;y; ng and a set JCf1;y; p̂;y; ng � f1;y; q̂;y; ng such that jJj ¼ n � 1
and both projections of J onto f1;y; p̂;y; ng and f1;y; q̂;y; ng are surjective.
Introduce new variables bkl ; k; l ¼ 1;y; n; by the formulas bkl ¼ akl for ðl; kÞeJ;

bkl ¼ a�1
lk for ðl; kÞAJ: Let FJ be a ring of formal series in variables bkl :

Proposition 9.4.1. The quasideterminant jAjij is defined in the ring FJ and is given by

the formula

jAjij ¼ bij �
X

ð�1Þs
bii1 bi1i2ybisj : ð9:4:1Þ

The sum is taken over all sequences i1;y; is such that ikai; j for k ¼ 1;y; s:

Proposition 9.4.2. The inverse to jAjij is also defined in the ring FJ and is given by the

following formula:

jAjij ¼ bij �
X

ð�1Þs
bii1 bi1i2ybisj : ð9:4:2Þ

The sum is taken over all sequences i1;y; is:

All relations between quasideterminants, including the Sylvester identity, can be
deduced from formulas (9.4.1) and (9.4.2).

Formulas (9.4.1) and (9.4.2) can be interpreted in terms graph theory. Let Gn be a
complete oriented graph with vertices 1;y; n and edges ekl ; where k; l ¼ 1;y; n:
Introduce a bijective correspondence between edges of the graph and elements bkl

such that ekl/bkl :
Then there exist a bijective correspondence between the monomials bii1 bi1i2ybisj

and the paths from the vertex i to the vertex j:

9.5. Factorizations of differential operators and noncommutative variation of constants

Let R be an algebra with a derivation D : R-R: Denote Dg by g0 and Dkg by gðkÞ:

Let PðDÞ ¼ Dn þ a1Dn�1 þ?þ an be a differential operator acting on R and fi;
i ¼ 1;y; n; be solutions of the homogeneous equation PðDÞf ¼ 0; i.e., PðDÞfi ¼ 0
for all i:
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For k ¼ 1;y; n consider the Wronski matrix

Wk ¼
fðk�1Þ

1 ? fðk�1Þ
k

?

f1 ? fk

0B@
1CA

and suppose that any square submatrix of Wn is invertible.

Set wk ¼ jW j1k and bk ¼ wk
0w�1

k ; k ¼ 1;y; n:

Theorem 9.5.1 (Etingof et al. [EGR]).

PðDÞ ¼ ðD � bnÞðD � bn�1ÞyðD � b1Þ:

Corollary 9.5.2. Operator PðDÞ can be factorized as

PðDÞ ¼ ðwn � D � w�1
n Þðwn�1 � D � w�1

n�1Þyðw1 � D � w�1
1 Þ:

One can also construct solutions of the nonhomogeneous equation PðDÞc ¼ f ;
fAR; starting with solutions f1;y;fn of the homogeneous equation. Suppose
that any square submatrix of Wn is invertible and that there exist elements ujAR;

j ¼ 1;y; n; such that

uj
0 ¼ jW j�1

1j f : ð9:5:1Þ

Theorem 9.5.3. The element c ¼
Pj¼n

j¼1 fjuj satisfies the equation

ðDn þ a1Dn�1 þ?þ anÞc ¼ f :

In the case where R is the algebra of complex valued functions gðxÞ; xAR the
solution c of the nonhomogeneous equation is given by the classical formula

cðxÞ ¼
Xj¼n

j¼1

fj

Z
det Wj

det W
dx;

where matrix Wj is obtained from the Wronski matrix W by replacing the entries in

the jth column of W by f ; 0;y; 0: It is easy to see that formula (9.5.1) and Theorem
9.5.3 imply formula (9.5.2).
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9.6. Iterated Darboux transformations

Let R be a differential algebra with a derivation D : R-R and fAR be an

invertible element. Recall that we denote DðgÞ ¼ g0 and DkðgÞ ¼ gðkÞ: In particular

Dð0ÞðgÞ ¼ g:

For fAR define Dðf; f Þ ¼ f 0 � f0f�1f : Following [Mat] we call Dðf; f Þ the
Darboux transformation of f defined by f: This definition was known for matrix
functions f ðxÞ and D ¼ @x: Note that

Dðf; f Þ ¼ f0

f f

������
������:

Let f1;y;fk: Define the iterated Darboux transformation Dðfk;yf1; f Þ by
induction as follows. For k ¼ 1; it coincides with the Darboux transfor-
mation defined above. Assume that k41: The expression Dðfk;y;f1; f Þ is
defined if Dðfk;y;f2; f Þ is defined and invertible and Dðfk; f Þ is defined. In
this case,

Dðfk;yf1; f Þ ¼ DðDðfk;yf2; f Þ;Dðf1; f ÞÞ:

Theorem 9.6.1. If all square submatrices of matrix ðfð jÞ
i Þ; i ¼ 1;y; k; j ¼ k �

1;y; 0 are invertible, then

Dðfk;y;f1; f Þ ¼
fðkÞ

1 ? fðkÞ
k

? ? ? ?

f f1 ? fk

��������
��������:

The proof follows from the noncommutative Sylvester theorem (Theorem 1.5.2).

Corollary 9.6.2. The iterated Darboux transformation Dðfk;yf1; f Þ is symmetric in

f1;y;fk:

The proof follows from the symmetricity of quasideterminants.

Corollary 9.6.3 (Matveev [Mat]). In commutative case, the iterated Darboux

transformation is a ratio of two Wronskians,

Dðfk;y;f1; f Þ ¼ Wðf1;yfk; f Þ
Wðf1;y;fkÞ

:
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9.7. Noncommutative Sylvester–Toda lattices

Let R be a division ring with a derivation D : R-R: Let fAR and the
quasideterminants

TnðfÞ ¼

f Df ? Dn�1f

Df D2f ? Dnf

? ? ? ?

Dn�1f Dnf ?

�����������

�����������
ð9:7:1Þ

are defined and invertible. Set f1 ¼ f and fn ¼ TnðfÞ; n ¼ 2; 3;y :

Theorem 9.7.1. Elements fn; n ¼ 1; 2;y; satisfy the following system of equations:

DððDf1Þf�1
1 Þ ¼ f2f

�1
1 ;

DððDfnÞf�1
n Þ ¼ fnþ1f

�1
n � fnf

�1
n�1; nX2:

If R is commutative, the determinants of matrices used in formulas (9.7.1) satisfy a
nonlinear system of differential equations. In the modern literature this system is
called the Toda lattice (see, for example, [Ok] but in fact it was discovered by
Sylvester in 1862 [Syl]) and, probably, should be called the Sylvester–Toda
lattice. Our system can be viewed as a noncommutative generalization of the
Sylvester–Toda lattice. Theorem 9.7.1 appeared in [GR1,GR2] and was generalized
in [RS] and [EGR].

The following theorem is a noncommutative analog of the famous Hirota
identities.

Theorem 9.7.2. For nX2

Tnþ1ðfÞ ¼ TnðD2fÞ � TnðDfÞ � ðTn�1ðD2fÞ�1 � TnðfÞ�1Þ�1 � TnðDfÞ:

The proof follows from the Theorem 1.5.2.

9.8. Noncommutative orthogonal polynomials

The results described in this subsection were obtained in [GKLLRT]. Let
S0;S1;S2;y be elements of a skew-field R and x be a commutative variable. Define a
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sequence of elements PiðxÞAR½x�; i ¼ 0; 1;y; by setting P0 ¼ S0 and

PnðxÞ ¼

Sn ? S2n�1

Sn�1 ? S2n�2 xn�1

? ? ? ?

S0 ? Sn�1 1

����������

����������
ð9:8:1Þ

for nX1: We suppose here that quasideterminants in (9.8.1) are defined. Proposition
1.5.1 implies that PnðxÞ is a polynomial of degree n: If R is commutative, then
Pn; nX0; are orthogonal polynomials defined by the moments Sn; nX0: We are going
to show that if R is a free division ring generated by Sn; nX0; then polynomials Pn are
indeed orthogonal with regard a natural noncommutative R-valued product on R½x�:

Let R be a free skew-field generated by cn; nX0: Define on R a natural anti-
involution a/a� by setting c�n ¼ cn for all n: Extend the involution to R½x� by setting

ð
P

aix
iÞ� ¼

P
aix

i: Define the R-valued inner product on R½x� by settingX
aix

i;
X

bjx
j

D E
¼
X

aiciþjb
�
j :

Theorem 9.8.1. For nam we have

/PnðxÞ;PmðxÞS ¼ 0:

The three term relation for noncommutative orthogonal polynomials PnðxÞ can be

expressed in terms of noncommutative quasi-Schur functions Ši1;y;iN defined in 6.4.

We will use a notation ŠiN�1j if i1 ¼ ? ¼ iN�1 and iN ¼ j and write ŠiN if i1 ¼ ? ¼ iN :

Theorem 9.8.2. The noncommutative orthogonal polynomials PnðxÞ satisfy the three

term recurrence relation

Pnþ1ðxÞ � ðx � Š�
nnðnþ1ÞŠ

�1
nnþ1 þ Š�

ðn�1Þn�1n
Š�1
ðn�1ÞnÞPnðxÞ þ Š�

nnþ1 Š�1
ðn�1Þn Pn�1ðxÞ ¼ 0

for nX1:
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