128 research outputs found
Asymptotic symmetries on Kerr--Newman horizon without anomaly of diffeomorphism invariance
We analyze asymptotic symmetries on the Killing horizon of the
four-dimensional Kerr--Newman black hole. We first derive the asymptotic
Killing vectors on the Killing horizon, which describe the asymptotic
symmetries, and find that the general form of these asymptotic Killing vectors
is the universal one possessed by arbitrary Killing horizons. We then construct
the phase space associated with the asymptotic symmetries. It is shown that the
phase space of an extreme black hole either has the size comparable with a
non-extreme black hole, or is small enough to exclude degeneracy, depending on
whether or not the global structure of a Killing horizon particular to an
extreme black hole is respected. We also show that the central charge in the
Poisson brackets algebra of these asymptotic symmetries vanishes, which implies
that there is not an anomaly of diffeomorphism invariance. By taking into
account other results in the literature, we argue that the vanishing central
charge on a black hole horizon, in an effective theory, looks consistent with
the thermal feature of a black hole. We furthermore argue that the vanishing
central charge implies that there are infinitely many classical configurations
that are associated with the same macroscopic state, while these configurations
are distinguished physically.Comment: 14 pages, v2: references added, minor corrections, v3: new pars and
refs. added and corresponding correction
Peripherally inserted central catheterârelated deep vein thrombosis: contemporary patterns and predictors
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/107486/1/jth12549.pd
Peripherally inserted central catheterârelated deep vein thrombosis: contemporary patterns and predictors: reply
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109637/1/jth12721.pd
Leptogenesis with Dirac Neutrinos
We describe a "neutrinogenesis" mechanism whereby, in the presence of
right-handed neutrinos with sufficiently small pure Dirac masses,
(B+L)-violating sphaleron processes create the baryon asymmetry of the
Universe, even when B=L=0 initially. It is shown that the resulting neutrino
mass constraints are easily fulfilled by the neutrino masses suggested by
current experiments. We present a simple toy model which uses this mechanism to
produce the observed baryon asymmetry of the Universe. (PostScript Errors
corrected in latest Version).Comment: 4 pages, Latex (using amsmath,feynmp,graphicx), 4 figure
Extended Smoothed Boundary Method for Solving Partial Differential Equations with General Boundary Conditions on Complex Boundaries
In this article, we describe an approach for solving partial differential
equations with general boundary conditions imposed on arbitrarily shaped
boundaries. A continuous function, the domain parameter, is used to modify the
original differential equations such that the equations are solved in the
region where a domain parameter takes a specified value while boundary
conditions are imposed on the region where the value of the domain parameter
varies smoothly across a short distance. The mathematical derivations are
straightforward and generically applicable to a wide variety of partial
differential equations. To demonstrate the general applicability of the
approach, we provide four examples herein: (1) the diffusion equation with both
Neumann and Dirichlet boundary conditions; (2) the diffusion equation with both
surface diffusion and reaction; (3) the mechanical equilibrium equation; and
(4) the equation for phase transformation with the presence of additional
boundaries. The solutions for several of these cases are validated against
corresponding analytical and semi-analytical solutions. The potential of the
approach is demonstrated with five applications: surface-reaction-diffusion
kinetics with a complex geometry, Kirkendall-effect-induced deformation,
thermal stress in a complex geometry, phase transformations affected by
substrate surfaces, and a self-propelled droplet.Comment: This document is the revised version of arXiv:0912.1288v
The Period Changes of the Cepheid RT Aurigae
Observations of the light curve for the 3.7-day Cepheid RT Aur both before
and since 1980 indicate that the variable is undergoing an overall period
increase, amounting to +0.082 +-0.012 s/yr, rather than a period decrease, as
implied by all observations prior to 1980. Superposed on the star's O-C
variations is a sinusoidal trend that cannot be attributed to random
fluctuations in pulsation period. Rather, it appears to arise from light travel
time effects in a binary system. The derived orbital period for the system is P
= 26,429 +-89 days (72.36 +-0.24 years). The inferred orbital parameters from
the O-C residuals differ from those indicated by existing radial velocity data.
The latter imply the most reasonable results, namely a1 sin i = 9.09 (+-1.81) x
10^8 km and a minimum secondary mass of M2 = 1.15 +-0.25 Msun. Continued
monitoring of the brightness and radial velocity changes in the Cepheid are
necessary to confirm the long-term trend and to provide data for a proper
spectroscopic solution to the orbit.Comment: Accepted for publication in PASP (November 2007
TeV physics and the Planck scale
Supersymmetry is one of the best motivated possibilities for new physics at
the TeV scale. However, both concrete string constructions and phenomenological
considerations suggest the possibility that the physics at the TeV scale could
be more complicated than the Minimal Supersymmetric Standard Model (MSSM),
e.g., due to extended gauge symmetries, new vector-like supermultiplets with
non-standard SU(2)xU(1) assignments, and extended Higgs sectors. We briefly
comment on some of these possibilities, and discuss in more detail the class of
extensions of the MSSM involving an additional standard model singlet field.
The latter provides a solution to the problem, and allows significant
modifications of the MSSM in the Higgs and neutralino sectors, with important
consequences for collider physics, cold dark matter, and electroweak
baryogenesis.Comment: 17 pages, 5 figures. To appear in New Journal of Physic
Metastable Vacua in Flux Compactifications and Their Phenomenology
In the context of flux compactifications, metastable vacua with a small
positive cosmological constant are obtained by combining a sector where
supersymmetry is broken dynamically with the sector responsible for moduli
stabilization, which is known as the F-uplifting. We analyze this procedure in
a model-independent way and study phenomenological properties of the resulting
vacua.Comment: 21 pages, 19 figures; v2: matches version published in JHE
A note on the primordial abundance of stau NLSPs
In scenarios with a gravitino LSP, there exist strong BBN constraints on the
abundance of a possible stau NLSP. We find that in settings with substantial
left-right mixing of the stau mass eigenstates these constraints can be evaded
even for very long-lived staus.Comment: 17 pages, 5 figures, discussion on vacuum stability adde
- âŠ