98 research outputs found

    Radiation and mass transfer effects on an unsteady MHD free convection flow past a heated vertical plate in a porous medium with viscous dissipation

    Get PDF
    An unsteady, two-dimensional, hydromagnetic, laminar free convective boundary-layer flow of an incompressible, Newtonian, electrically-conducting and radiating fluid past an infinite heated vertical porous plate with heat and mass transfer is analyzed, by taking into account the effect of viscous dissipation. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. Numerical evaluation of the analytical results is performed and graphical results for velocity, temperature and concentration profiles within the boundary layer and tabulated results for the skin-friction coefficient, Nusselt number and Sherwood number are presented and discussed. It is observed that, when the radiation parameter increases, the velocity and temperature decrease in the boundary layer, whereas when thermal and solutal Grashof increases the velocity increases

    Computational analysis of viscous dissipation and joule-heating effects on non-Darcy MHD natural convection flow from a horizontal cylinder in porous media with internal heat generation

    Get PDF
    In the present paper we examine the effects of viscous dissipation, Joule heating and heat source/sink on non-Darcy MHD natural convection heat transfer flow over permeable horizontal circular cylinder in a porous medium. The boundary layer equations, which are parabolic in nature, are normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, stable Keller-box finite difference scheme. A parametric study illustrating the influence of Darcy parameter (Da), Forchheimer parameter (Λ), Grashof number(Gr), heat source/sink parameter (Ω) and viscous dissipation parameter (Ec) on the fluid velocity, temperature as well as local skin-friction and Nusselt numbers is conducted Increasing Forchheimer inertial drag parameter (Λ) retards the flow considerably but enhances temperatures. Increasing viscous dissipation parameter(Ec) is found to elevate velocities i.e. accelerate the flow and increase temperatures. Increasing heat source/sink parameter (Ω) is found to elevate velocities and increase temperatures. Increasing the Grashof number (Gr) is found to elevate the velocity and decrease the temperatures. Local skin friction number is found to be increases with increasing heat source/sink parameter (Ω) where as Local Nusselt number is found to decrease with increasing heat source/sink parameter (Ω)

    Mathematical Study of Laminar Boundary Layer Flow and Heat Transfer of Tangenthyperbolic Fluid Pasta Vertical Porous Plate with Biot Number Effects

    Get PDF
    In this article, we investigate the nonlinear steady boundary layer flow and heat transfer of an incompressible Tangent Hyperbolicnon-Newtonian fluid from a vertical porous plate. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a second-order accurate implicit finite-difference Keller Box technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely the Weissenberg number (We), the power law index (n), Prandtl number (Pr), Biot number (), and dimensionless local suction parameter()on velocity and temperature evolution in the boundary layer regime are examined in detail. Furthermore the effects of these parameters on surface heat transfer rate and local skin friction are also investigated. Validation with earlier Newtonian studies is presented and excellent correlation achieved. It is found that velocity, Skin friction and Nusselt number (heat transfer rate) are reduced with increasing Weissenberg number (We), whereas, temperature is enhanced. Increasing power law index (n) enhances velocity and Nusselt number (heat transfer rate) but temperature and Skin friction decrease. An increase in the Biot number () is observed to enhance velocity, temperature, local skin friction and Nusselt number. An increasing Prandtl number, Pr, is found to decrease both velocity, temperature and skin friction but elevates heat transfer rate (Nusselt number). The study is relevant to chemical materials processing applications

    Radiation and Mass Transfer Effects on MHD Free Convective Dissipative Fluid in the Presence of Heat Source/Sink

    Get PDF
    Thermal radiation effects on MHD flow past an impulsively started vertical plate in the presence of heat source/sink is investigated, by taking into account the heat due to viscous dissipation. The governing boundary layer equations of the flow field are solved by an implicit finite difference method of Crank-Nicholson type. A parametric study is performed to illustrate the influence of radiation parameter, magnetic parameter, Grashof number, Prandtl number, Eckert number on the velocity, temperature and concentration profiles. Also, the local and average skin-friction, Nusselt number and Sherwood number are presented graphically. The numerical results reveal that the radiation induces a rise in both the velocity and temperature, and a decrease in the concentration. Also with an increase in the heat absorption/generation parameter the velocity increases whereas the temperature decreases. The model finds applications in solar energy collection systems, geophysics and astrophysics, aero space and also in the design of high temperature chemical process systems

    Free Convection Flow and Heat Transfer of Tangent Hyperbolic past a Vertical Porous Plate with Partial Slip

    Get PDF
    This article presents the nonlinear free convection boundary layer flow and heat transfer of an incompressible Tangent Hyperbolic non-Newtonian fluid from a vertical porous plate with velocity slip and thermal jump effects. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a second-order accurate implicit finite-difference Keller Box technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely the Weissenberg number (We), the power law index (n), Velocity slip (Sf), Thermal jump (ST), Prandtl number (Pr) and dimensionless tangential coordinate () on velocity and temperature evolution in the boundary layer regime are examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated. Validation with earlier Newtonian studies is presented and excellent correlation achieved. It is found that velocity, skin friction and heat transfer rate (Nusselt number) is increased with increasing Weissenberg number (We), whereas the temperature is decreased. Increasing power law index (n) enhances velocity and heat transfer rate but decreases temperature and skin friction. An increase in Thermal jump (ST) is observed to decrease velocity, temperature, local skin friction and Nusselt number. Increasing Velocity slip (Sf) is observed to increase velocity and heat transfer rate but decreases temperature and local skin friction. An increasing Prandtl number, (Pr), is found to decrease both velocity and temperature. The study is relevant to chemical materials processing applications

    Radiation and Mass Transfer Effects on Transient Free Convection Flow of a Dissipative Fluid past Semi-Infinite Vertical Plate with Uniform Heat and Mass Flux

    Get PDF
    Effect of radiation and mass transfer on the transient free convection flow of a dissipative past semi-infinite vertical plate with uniform heat and mass flux is analyzed, by taking into account the effect of viscous dissipation. This type of problems finds application in many technological and engineering fields such as plasma studies, petroleum industries, MHD energy generators, cooling of nuclear reactors, the boundary layer control in aerodynamics, crystal growth and furnace engineering. The Rosseland approximation is used to describe the radiative heat transfer in the limit of the optically thick fluid. The non-linear, coupled equations are solved using an implicit finite difference scheme of Crank-Nicolson type. Transient temperature, concentration and velocity profiles, local and average skinfriction coefficient, Nusselt number and Sherwood number are presented graphically and discussed. It is observed that, when the radiation parameter increases the velocity and temperature decrease accompanied by simultaneous reduction in both momentum and thermal boundary layers

    Finite Difference Analysis of Radiative Free Convection Flow Past an Impulsively Started Vertical Plate with Variable Heat and Mass Flux

    Get PDF
    A numerical solution of the unsteady radiative free convection flow of an incompressible viscous fluid past an impulsively started vertical plate with variable heat and mass flux is presented here. This type of problem finds application in many technological and engineering fields such as rocket propulsion systems, spacecraft re-entry aerothermodynamics, cosmical flight aerodynamics, plasma physics, glass production and furnace engineering. The fluid is gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing non-linear, coupled equations are solved using an implicit finite difference scheme. Numerical results for the velocity, temperature, concentration, the local and average skinfriction, the Nusselt and Sherwood number are shown graphically, for different values of Prandtl number, Schmidt number, thermal Grashof number, mass Grashof number, radiation parameter, heat flux exponent and the mass flux exponent. It is observed that, when the radiation parameter increases, the velocity and temperature decrease in the boundary layer. The local and average skin-friction increases with the increase in radiation parameter. For increasing values of radiation parameter the local as well as average Nusselt number increases

    Effects of ramped wall temperature and concentration on viscoelastic Jeffrey’s fluid flows from a vertical permeable cone

    Get PDF
    In thermo-fluid dynamics, free convection flows external to different geometries such as cylinders, ellipses, spheres, curved walls, wavy plates, cones etc. play major role in various industrial and process engineering systems. The thermal buoyancy force associated with natural convection flows can exert a critical role in determining skin friction and heat transfer rates at the boundary. In thermal engineering, natural convection flows from cones has gained exceptional interest. A theoretical analysis is developed to investigate the nonlinear, steady-state, laminar, non-isothermal convection boundary layer flows of viscoelastic fluid from a vertical permeable cone with a power-law variation in both temperature and concentration. The Jeffery’s viscoelastic model simulates the non-Newtonian characteristics of polymers, which constitutes the novelty of the present work. The transformed conservation equations for linear momentum, energy and concentration are solved numerically under physically viable boundary conditions using the finite-differences Keller-Box scheme. The impact of Deborah number (De), ratio of relaxation to retardation time (λ), surface suction/injection parameter (fw), power-law exponent (n), buoyancy ratio parameter (N) and dimensionless tangential coordinate (Ѯ) on velocity, surface temperature, concentration, local skin friction, heat transfer rate and mass transfer rate in the boundary layer regime are presented graphically. It is observed that increasing values of De reduces velocity whereas the temperature and concentration are increased slightly. Increasing λ enhance velocity however reduces temperature and concentration slightly. The heat and mass transfer rate are found to decrease with increasing De and increase with increasing values of λ. The skin friction is found to decrease with a rise in De whereas it is elevated with increasing values of λ. Increasing values of fw and n, decelerates the flow and also cools the boundary layer i.e. reduces temperature and also concentration. The study is relevant to chemical engineering systems, solvent and polymeric processes
    • …
    corecore