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Abstract

In the present paper we examine the effects of viscous dissipation, Joule
heating and heat source/sink on non-Darcy MHD natural convection heat
transfer flow over permeable horizontal circular cylinder in a porous medium.
The boundary layer equations, which are parabolic in nature, are normal-
ized into non-similar form and then solved numerically with the well-tested,
efficient, implicit, stable Keller-box finite difference scheme. A parametric
study illustrating the influence of Darcy parameter (Da), Forchheimer pa-
rameter (Λ) , Grashof number(Gr), heat source/sink parameter (Ω) and vis-
cous dissipation parameter (Ec) on the fluid velocity, temperature as well as
local skin-friction and Nusselt numbers is conducted Increasing Forchheimer
inertial drag parameter (Λ) retards the flow considerably but enhances tem-
peratures. Increasing viscous dissipation parameter(Ec) is found to elevate
velocities i.e. accelerate the flow and increase temperatures. Increasing
heat source/sink parameter (Ω) is found to elevate velocities and increase
temperatures. Increasing the Grashof number (Gr) is found to elevate the
velocity and decrease the temperatures. Local skin friction number is found
to be increases with increasing heat source/sink parameter (Ω) where as Lo-
cal Nusselt number is found to decrease with increasing heat source/sink
parameter (Ω).
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Nomenclature

a radius of the cylinder

B0 the externally imposed radial magnetic
field

Cf skin friction coefficient

Da Darcy parameter

f non-dimensional steam function

g acceleration due to gravity

Gr Grashof number

K thermal diffusivity

k∗ the mean absorption coefficient

M the magnetic parameter

N buoyancy ratio parameter

Nu Local Nusselt number

Pr Prandtl number

qr radiative heat flux

Sc Schmidt number

Sh local Sherwood number

T temperature

u, v non-dimensional velocity components
along the x- and y- directions, respec-
tively

x, y non-dimensional Cartesian coordinates
along the surface of the cylinder and
normal to it,respectively

Greek symbols

α thermal diffusivity

β, β∗ the coefficients of thermal expansion
and concentration expansion, respec-
tively

Φ the azimuthal coordinate

φ non-dimensional concentration

Γ the Forchheimer inertial drag coeffi-
cient

η the dimensionless radial coordinate

µ dynamic viscosity

ν kinematic viscosity

θ non-dimensional temperature

ρ density

σ the electrical conductivity

σ∗ the Stefan-Boltzmann constant

ξ the dimensionless tangential coordi-
nate

ψ dimensionless stream function

Subscripts

w conditions on the wall ∞ free stream conditions

1 Introduction

Transport processes in porous media can involve fluid, heat transfer in single
or multi-phase scenarios. Such flows with and without buoyancy effects arise
frequently in many branches of chemical engineering and owing to their viscous-
dominated nature are generally simulated using the Darcy model. Applications
of such flows include chip-based microfluidic chromatographic separation devices
Dorfmann and Brenner [1], heat transfer in radon saturating permeable regimes
Minkin [2] flows in ceramic filter components of Integrated gasification combined
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cycles (IGCC) Seo et al. [3] separation of Carbon Dioxide from the gas phase
with aqueous absorbents (water and diethanolamine solution) in microporous
hollow fibre membrane modules Al-saffar et al. [4] and monolithic adsorbent
flows consisting of micro-porous zeolite particles embedded in a polyamide ma-
trix Ledvinkova et al. [5]. Porous media flow simulations are also critical in
convective processes in hygroscopic materials Turner et al. [6], electroremedi-
ation in soil decontamination technique wherein an electric field applied to a
porous medium generates the migration of ionic species in solution Pomés et al.
[7], reactive transport in tubular porous media reactors Islam, [8], perfusive bed
flows Albusairi and Hsu [9], gelation of biopolymers in porous media which arise
in petroleum recovery and in subsurface heavy metal stabilization Khachatoo-
rian and Yen, [10]. Further still applications arise in the sorption and diffusion
of volatile organic compounds (VOCs) in soils Arocha et al. [11], polymeric
filtration in permeable barriers Zueco et al [12] and axial flow through chro-
matographic columns packed with non-rigid gels Östergren and Trägørdh [13].
Frequently working fluids may possess an electrically-conducting nature and will
respond to magnetic fields. For example in the liquid-encapsulated Czochralski
(LEC) process Dennis and Dulikravich [14] a single compound semiconductor
crystal (e.g. indium phosphide or gallium antimonide) is grown via solidifica-
tion of an initially molten semiconductor contained in a crucible. The motion
of the electrically conducting molten semiconductor can be controlled with an
externally applied magnetic field. Magneto hydrodynamic flows also arise in
rheological wire coating processes Shafieenejad et al. [15], pulsed-field-gradient
NMR analysis of permeable transport Holmes et al. [16], magnetic field control
of polymer alignment in Carbon nanotubes Garmestani et al. [17] and MHD
levitation control of diamagnetic material manufacture Mogi et al. [18]. In
all these studies the strong and efficient effect of steady transverse magnetic
fields has been identified. Bég et al. [19] used a network electro-thermodynamic
computational method to analyze the transient MHD heat transfer in a porous
medium parallel plate channel with electrodynamic effects. Bég et al. [20] also
studied hydromagnetic free convection boundary layers from a sphere embed-
ded in a porous medium. Transport from a cylinder embedded in porous media
also has important applications in geothermics, environmental contamination
Alves et al. [21] and chemical processing Mauguet et al. [22]. Magnetohydrody-
namic convection in porous media is of considerable importance also in alternate
energy systems modeling Azzam, [23]. El-Amin [24] has analyzed numerically
magneto-convection from a horizontal cylinder in porous media.

In all the above studies, the effects of both viscous dissipation and Joule-
heating are neglected. Gebhart [25] has shown that the viscous dissipation effect
plays an important role in natural convection in various devices that are sub-
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jected to large deceleration or that operate at high rotational speeds, in strong
gravitational field processes on large scales (on large planets), and in geological
processes. With this understanding, Takhar and Soundalgekar [26] studies the
effects of viscous and Joule heating on the natural convection problem posed by
Sparrow and Cess [27], using the series expansion method proposed by Gebhart
[25]. Yih [28] has analyzed viscous and Joule heating effects on non-Darcy MHD
natural convection flow over a permeable sphere in porous media with internal
heat generation. Duwairi et al. [29] have studied viscous and Joule heating
effects over an isothermal cone in saturated porous media.

In the present paper, we propose to study the effects of viscous dissipation,
Joule heating and heat source/sink effects on the flow of an electrically conduct-
ing, viscous, incompressible heat flow past permeable horizontal circular cylinder
in a non-Darcy porous medium. The governing equations, which describe the
problem, were transformed and solved using Keller Box scheme. Such as study
has, to the authors’ knowledge not appeared hitherto in the literature.

2 Mathematical model

Consider the steady, laminar, two-dimensional, incompressible, electrically-conducting,
buoyancy - driven convection heat transfer flow from a horizontal cylinder em-
bedded in an isotropic, homogenous, fully-saturated porous medium. Figure 1
shows the flow model and physical coordinate system. The x-coordinate is mea-
sured along the circumference of the horizontal cylinder from the lowest point
and the y-coordinate is measured normal to the surface, with a denoting the
radius of the horizontal cylinder. Φ = x/a is the angle of the y-axis with respect
to the vertical (0 ≤ Φ ≤ π). The gravitational acceleration, g, acts downwards.
Magnetic Reynolds number is assumed to be small enough to neglect magnetic
induction effects. Hall current and ionslip effects are also neglected since the
magnetic field is weak. It is also assumed that the Boussineq approximation
holds i.e. that density variation is only experienced in the buoyancy term in the
momentum equation. Additionally the electron pressure (for weakly conducting
fluids) and the thermoelectric pressure are negligible.

Both the horizontal cylinder and the fluid are maintained initially at the
same temperature. Instantaneously they are raised to a temperature Tw(> T∞)
which remain unchanged thereafter. The effects of viscous dissipation, Joule
heating and internal heat generation are included in this work. In line with the
approach of Yih [28] and introducing the boundary layer approximations, the
governing conservation equations can be written as follows:
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Figure 1: Physical Model and Coordinate System
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The boundary conditions are prescribed at the cylinder surface and the edge
of the boundary layer regime, respectively as follows:

y = 0 : u = 0, v = Vw, T = Tw (3)

y = ∞ : u = 0, T = T∞

where u and v denote the velocity components in the x - and y- directions re-
spectively, K and Γ are the respective permeability and the inertia coefficient
of the porous medium, ν is the kinematic viscosity of the conducting fluid, β is
the coefficients of concentration expansion, respectively, T is the temperature re-
spectively, σ is the electrical conductivity, B0 is the externally imposed magnetic
field in the y-direction, ρ is the density, cpis the specific heat capacity, T∞- is
the volumetric rate of heat generation/absorption , α is the thermal diffusivity,
T∞is the free stream temperature Vw is the uniform blowing/suction velocity.
Implicit in the present model is the assumption that magnetic Reynolds number
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is small and the induced magnetic field is negligible compared with the applied
magnetic field. The Hall Effect is also neglected. It should be noted that in the
momentum equation Eq.(2), the fifth term on the right hand side is the porous
medium Darcian drag force representing pressure loss due to the presence of
the porous medium. The sixth term on the same side is the inertial drag force
(also referred to as the Forchheimer impedance) which accounts for additional
pressure drop resulting from inter-pore-mixing appearing at high velocities, as
described by Plumb and Huenefeld [30]. The stream function ψ is defined by
u = ∂ψ/∂y and v = −∂ψ/∂x, therefore the continuity equation is automatically
satisfied. Proceeding with the analysis we introduce the following dimensionless
variables:

ξ =
x

a
, η =

y

a
4
√
Gr, f(ξ, η) =

ψ

νξ 4
√
Gr

θ(ξ, η) =
T − T∞
Tw − T∞

, Gr =
gβ(Tw − T∞)a3

ν2
(4)

Substituting Eq.(4) into Eqs.(1) to (3), we obtain the coupled, nonlinear,
dimensionless partial differential equations for momentum, energy and species
conservation for the regime:

f ′′′+ff ′′−(1+ξΛ)f ′2+
sin ξ

ξ
(θ)−

[
M +

1

DaGr1/2

]
f ′ = ξ

(
f ′
∂f ′

∂ξ
− f ′′

∂f

∂ξ

)
(5)

θ′′

Pr
+ fθ′ + ξ2Ec

[
f ′′2 +Mf ′2

]
+Ωθ = ξ

(
f ′
∂θ

∂ξ
− θ′

∂f

∂ξ

)
(6)

The transformed dimensionless boundary conditions are:

η = 0 : f ′ = 0, f = fw, θ = 1 (7)

η → ∞ : f ′ = 0, θ = 0

In the above equations, the primes denote the differentiation with respect
to η, the dimensionless radial coordinate, ξ is the dimensionless tangential
coordinate and Φ the azimuthal coordinate, Λ = Γa is the local inertia co-

efficient (Forchheimer parameter), M = σB2
0a

2
/
ρν

√
Gr is the magnetic pa-

rameter, Da = K
a2

is a Darcy parameter, Pr =
ρνcp
k is the Prandtl number,

Ec = Gr ν2

a2cp(Tw−T∞)
is the Eckert number, Ω = Qa2

ρcpνGr1/2
is the heat source/sink

parameter, Ω > 0 for Q > 0 (the case of heat source), Ω < 0 for Q < 0 (the case
of heat sink), and Gr is the Grashof (free convection) parameter The engineering
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design quantities of physical interest include the skin-friction coefficient, Nusselt
number which are given by:

1

2
Cf

4
√
Gr = ξf ′′(ξ, 0) (8a)

Nu
4
√
Gr

= −θ′(ξ, 0) (8b)

3 Numerical solution with implicit difference code

In this study the efficient Keller-Box implicit difference method has been em-
ployed to solve the general flow model defined by equations (5) to (6) with
boundary conditions (7a) and (7b). This method, originally developed for low
speed aerodynamic boundary layers by Keller [31] has been employed in a diverse
range of nonlinear magneto hydrodynamics and coupled heat transfer problems.
These include magnetic boundary layers Chiam [32], wavy thermal boundary lay-
ers Rees and Pop, [33], rotating hydro magnetic convection Hossain et al., [34],
radiative-convective porous media gas flows Bég et al. [38], thermal convection
in porous regimes Rees and Hossain, [36], magneto-viscoelastic heat transfer in
porous media Bég et al. [37], radiation-convection viscoelastic boundary lay-
ers Bég et al. [38], hydromagnetic convection from an elastic cylinder Ishak et
al. [39] and hydro magnetic thermophoretic mixed convection in porous media
Damseh et al. [40]. Very few of these papers however have provided guidance for
researchers as to customization of the Keller-box scheme to magneto hydrody-
namic heat transfer problems. We therefore present a more detailed exposition
here. Essentially 4 phases are central to the Keller Box Scheme. These are:

a) Reduction of the Nth order partial differential equation system to N 1st order
equations

b) Finite Difference Discretization

c) Quasilinearization of Non-Linear Keller Algebraic Equations

d) Block-tridiagonal Elimination of Linear Keller Algebraic Equations

A 2-Dimensional computational grid is imposed on the ξ−η plane as sketched
below. The stepping process is defined by:

ξo = 0; ξn = ξn−1 + kn, n = 1, 2, . . . N (14a)

η0 = 0; ηj = ηj−1 + hj , j = 1, 2 . . . J (14b)
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where kn and hj denote the step distances in the ξ and η directions respectively.
Denoting Σ as the value of any variable at station ξn, ηj , and the following
central difference approximations are substituted for each reduced variable and
their first order derivatives, viz:

(Σ)j−1/2 = [Σn
j +Σn

j−1 +Σn−1
j +Σn−1

j−1 ]/4 (15a)

(∂Σ/∂ξ)n−1/2
j−1/2= [Σn

j+ Σn
j−1−Σn−1

j−Σn−1
j−1 ]/4kn (15b)

(∂Σ/∂η)n−1/2
j−1/2= [Σn

j+ Σn
j−1−Σn−1

j−Σn−1
j−1 ]/4hj (15c)

where kn = streamwise stepping distance (ξ-mesh spacing) and hj = spanwise
stepping distance (η-mesh spacing) defined as follows:

η j−1/2 = [η j + ηj−1]/2 (16a)

ξ n−1/2 = [ξn + ξn−1]/2 (16b)

Figure 2: Grid meshing and a ”Keller Box” computational cell

Phase a) Reduction of the Nth order partial differential equation
system to N 1st order equations

Equations (5) to (6) subject to the boundary conditions (7) are first writ-
ten as a system of first-order equations. For this purpose, we introduce new
dependent variables u(x, y), v(x, y), t(x, y), and s(x, y) as the variables for tem-
perature, velocity respectively. Therefore, we obtain the following five first-order
equations:

f ′ = u (17a)
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u′ = v (17b)

s′ = t (17c)

v′ + fv − (1 + ξΛ)u2 +
sin ξ

ξ
[s]−

[
M +

1

DaGr1/2

]
u = ξ

(
u
∂u

∂ξ
− v

∂f

∂ξ

)
(17d)

t′

Pr
+ ft+ ξ2Ec

[
v2 +Mu2

]
+Ωs = ξ

(
u
∂s

∂ξ
− t

∂f

∂ξ

)
(17e)

where primes denote differentiation with respect toη. In terms of the dependent
variables, the boundary conditions become:

η = 0 : u = 0, f = fw, s = 1
η = ∞ : u = 0, s = 0 (18)

Phase b) Finite Difference Discretization
The net rectangle considered in the x− y plane is shown in figure 3, and the

net points are denoted by:

Figure 3: Net ”Keller Box” for difference approximations

ξ0 = 0, ξn = ξn−1 + kn, n = 1, 2, ....N (19a)

η0 = 0, ηj = ηj−1 + hj , j = 1, 2, ....J, ηJ ≡ η∞, (19b)

where kn is the ∆ξ− spacing and hj is the ∆η−spacing. Here n and j are just
sequence numbers that indicate the coordinate location. We approximate the
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quantities (f, u, v, s, t) at points (ξn, ηj) of the net by (fnj , u
n
j , v

n
j , s

n
j , t

n
j ),

which we denote as net functions. We also employ the notion ( )nj for points and
quantities midway between net points and for any net function:

ξn−1/2 ≡ 1

2

(
ξn + ξn−1

)
, ηj−1/2 ≡ 1

2
(ηj + ηj−1) (20a,b)

()
n−1/2
j =

1

2

[
()nj + ()n−1

j

]
and ()nj−1/2 =

1

2

[
()nj + ()nj−1

]
(20c,d)

The derivatives in the x-direction are replaced by finite difference approxi-
mations. For any net function ( ), generally we have:

∂ ()

∂x
=

()n − ()n−1

kn
. (20e)

yjknξ
n ξn−1/2 ξn−1 yj−1yj−1/2yjηξ

We write the difference equations that are to approximate equations 17(a)
– 17(e) by considering one mesh rectangle as shown in Figure 1. We start by
writing the finite-difference approximations of the ordinary differential equations
17(a) to 17(c) for the midpoint (ξn, ηj−1/2) of the segment P1P2, using centered-
difference derivatives. This process is called “centering about (ξn, ηj−1/2)”. This
gives: (

fnj − fnj−1

)
hj

=
1

2

(
unj + unj−1

)
= unj−1/2, (21a)(

unj − unj−1

)
hj

=
1

2

(
vnj + vnj−1

)
= vnj−1/2, (21b)(

snj − snj−1

)
hj

=
1

2

(
tnj + tnj−1

)
= tnj−1/2, (21c)

The finite-difference forms of the partial differential equations (17 d) to (17
e) are approximated by centering about the midpoint

(
ξn−1/2, ηj−1/2

)
of the

rectangle P1P2P3P4. This can be done in two steps. In the first step, we center
equations (17d) to (17e) about the point

(
ξn−1/2, η

)
without specifying y. The

differenced version of equations (17 d) to (17 e) at ξn−1/2 then take the form:

(v′)n + (1 + α) (fv)n − (1 + α+ ξΛ)
(
u2
)n −

(
M +

1

DaGr1/2

)
un+

αvn−1fn − αfn−1vn +B (sn) = [− (v′) + (α− 1) (fv)+

(1− α+ ξΛ)
(
u2
)
−B (s) +

(
M +

1

DaGr1/2

)
u

]n−1
(22a)
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1

Pr
(t′)n + (1 + α) (ft)n + ξ2Ec

[
(vn)2 +M (un)2

]
+

Ωsn − α (us)n + αsn−1un − αun−1sn − αfn−1tn + αtn−1fn =[
− 1

Pr
(t′) + (α− 1) (ft)− ξ2Ec

[
(v)2 +M (u)2

]
− Ωs− α (us)

]n−1
(22b)

Where we have used the abbreviations

α =
ξn−1/2

kn
(23a)

B =
sin
(
ξn−1/2

)
ξn−1/2

(23b)

and where the notation []n−1 corresponds to quantities in the square bracket
evaluated at ξ = ξn−1. Next, we center equations (22 a-b) about the point(
ξn−1/2, ηj−1/2

)
by using equation (20d) yielding:(

vnj − vnj−1

hj

)
+ (1 + α)

(
fnj−1/2v

n
j−1/2

)
− (1 + α+ ξΛ)

(
unj−1/2

)2
−

(
M +

1

DaGr1/2

)
unj−1/2 + αvn−1

j−1/2f
n
j−1/2 − αfn−1

j−1/2v
n
j−1/2 +B

(
snj−1/2

)
=

−

[(
vn−1
j − vn−1

j−1

hj

)
+ (1− α)

(
fn−1
j−1/2v

n−1
j−1/2

)

+(α− 1− ξΛ)
(
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)2
+B

(
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)
−
(
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1
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j−1/2

]
(24a)

1
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(
tnj −tnj−1
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)
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(
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n
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)
+ ξ2Ec

[(
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)2
+M

(
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)2]
+

Ωsnj−1/2 − α
(
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n
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)
+ αsn−1
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n
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n
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n
j−1/2+

αtn−1
j−1/2f

n
j−1/2 = −

[
1
Pr

(
tn−1
j −tn−1

j−1

hj

)
+ (1− α)

(
fn−1
j−1/2t

n−1
j−1/2

)
+

ξ2Ec

[(
vn−1
j−1/2

)2
+M

(
un−1

j−1/2

)2]
+Ωsn−1

j−1/2 + α
(
un−1
j−1/2s

n−1
j−1/2

)]
(24b)
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Equations (21) and (22) are imposed for j= 1, 2. . . J at given n, and the
transformed boundary layer thickness,yJ is to be sufficiently large so that it is
beyond the edge of the boundary layer.

At ξ = ξn, the boundary conditions (11) become

fn0 = un0 = 0, sn0 = 1, unJ = 0, snJ = 0 (25)

Phase c) Quasilinearization of Non-Linear Keller Algebraic Equa-
tions

Newton’s Method is then employed to quasilinearize the equations (24 a-
b). If we assume fn−1

j , un−1
j , vn−1

j , sn−1
j , tn−1

j to be know for 0 ≤ j ≤ J , then
equations (21), (24) and (25) are a system of equations for the solution of the
unknowns (fnj , u

n
j , v

n
j , s

n
j , t

n
j ), j = 0, 1, 2,. . . ..J. For simplicity of notation we

shall write the unknowns at ξ = ξn as:

(fnj , u
n
j , v

n
j , s

n
j , t

n
j ) ≡ (f ,j u

,
j v

,
js

,
j t

)
j . (26)

Then the system of equations (21) and (24) can be written as (after multi-
plying with hj)

fj − fj−1 −
hj
2

(uj + uj−1) = 0, (27a)

uj − uj−1 −
hj
2

(vj + vj−1) = 0, (27b)

sj − sj−1 −
hj
2

(tj + tj−1) = 0, (27c)

(vj − vj−1) +
(1 + α)hj

4
[(fj + fj−1) (vj + vj−1)]−

hj
4

(1 + α+ ξΛ)×

(uj + uj−1)
2 − hj

2

(
M +

1

DaGr1/2

)
(uj + uj−1) +

αhj
2
vn−1
j−1/2 (fj + fj−1)−

αhj
2
fn−1
j−1/2 (vj + vj−1) +

Bhj
2

[sj + sj−1] = [R1]
n−1
j−1/2

(27d)
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1
Pr (tj − tj−1) +

(1 + α)hj
4

[(fj + fj−1) (tj + tj−1)] + ξ2Ec
hj
4
×

[
(vj + vj−1)

2 +M (uj + uj−1)
2
]
+Ω

hj
2

(sj + sj−1)−
αhj
4

×

[(uj + uj−1) (sj + sj−1)] +
αhj
2
sn−1
j−1/2 (uj + uj−1)−

αhj
2
un−1
j−1/2 (sj + sj−1)−

αhj
2
fn−1
j−1/2 (tj + tj−1) +

αhj
2
tn−1
j−1/2 (fj + fj−1) = [R2]

n−1
j−1/2

(27e)
Where

[R1]
n−1
j−1/2 = −hj

[(
vj − vj−1

hj

)
+ (1− α)

(
fj−1/2vj−1/2

)
+

(α− 1− ξΛ)
(
uj−1/2

)2
+B

(
sj−1/2

)
−
[
M +

1

DaGr1/2

]
uj−1/2

] (28a)

[R2]
n−1
j−1/2 = −hj

[
1

Pr

(
tj − tj−1

hj

)
+ (1− α)

(
fj−1/2tj−1/2

)
+

ξ2Ec
[(
vj−1/2

)2
+M

(
uj−1/2

)2]
+ Ωsj−1/2 + α

(
uj−1/2sj−1/2

)] (28b)

[R1]
n−1
j−1/2 and [R2]

n−1
j−1/2 involve only know quantities if we assume that solu-

tion is known on ξ = ξn−1. To linearize the non-linear system of equations (27)
using Newton’s method, we introduce the following iterates:

f
(i+1)
j = f

(i)
j + δf

(i)
j , u

(i+1)
j = u

(i)
j + δu

(i)
j , v

(i+1)
j = v

(i)
j + δv

(i)
j ,

s
(i+1)
j = s

(i)
j + δs

(i)
j , t

(i+1)
j = t

(i)
j + δt

(i)
j .

(29)

Then we substitute these expressions into equations (27a) – (27e) except for
the term ξn−1, and this yields:(
f
(i)
j + δf

(i)
j

)
−
(
f
(i)
j−1 + δf

(i)
j−1

)
− hj

2

(
u
(i)
j + δu

(i)
j + u

(i)
j−1 + δu

(i)
j−1

)
= 0, (30a)

(
u
(i)
j + δu

(i)
j

)
−
(
u
(i)
j−1 + δu

(i)
j−1

)
− hj

2

(
v
(i)
j + δv

(i)
j + v

(i)
j−1 + δv

(i)
j−1

)
= 0, (30b)(

s
(i)
j + δs

(i)
j

)
−
(
s
(i)
j−1 + δs

(i)
j−1

)
− hj

2

(
t
(i)
j + δt

(i)
j + t

(i)
j−1 + δt

(i)
j−1

)
= 0, (30c)
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(
v
(i)
j + δv

(i)
j

)
−
(
v
(i)
j−1 + δv

(i)
j−1

)
+

(1 + α)hj
4

×

[(
f
(i)
j + δf

(i)
j + f

(i)
j−1 + δf

(i)
j−1

)(
v
(i)
j + δv

(i)
j + v

(i)
j−1 + δv

(i)
j−1

)]
−

hj
4

(1 + α+ ξΛ)
(
u
(i)
j + δu

(i)
j + u

(i)
j−1 + δu

(i)
j−1

)2
−

hj
2

(
M +

1

DaGr1/2

)(
u
(i)
j + δu

(i)
j + u

(i)
j−1 + δu

(i)
j−1

)
+
αhj
2
vn−1
j−1/2

(
f
(i)
j + δf

(i)
j + f

(i)
j−1 + δf

(i)
j−1

)
− αhj

2
fn−1
j−1/2

(
v
(i)
j + δv

(i)
j + v

(i)
j−1 + δv

(i)
j−1

)
+
Bhj
2

[(
s
(i)
j + δs

(i)
j + s

(i)
j−1 + δs

(i)
j−1

)]
= [R1]

n−1
j−1/2 ,

(30d)

1

Pr

[(
t
(i)
j + δt

(i)
j

)
−
(
t
(i)
j−1 + δt

(i)
j−1

)]
+

(1 + α)hj
4

×

[(
f
(i)
j + δf

(i)
j + f

(i)
j−1 + δf

(i)
j−1

)(
t
(i)
j + δt

(i)
j + t

(i)
j−1 + δt

(i)
j−1

)]
+ ξ2Ec

hj
4
×

[(
v
(i)
j + δv

(i)
j + v

(i)
j−1 + δv

(i)
j−1

)2
+M

(
u
(i)
j + δu

(i)
j + u

(i)
j−1 + δu

(i)
j−1

)2]
+

+Ω
hj
2

(
s
(i)
j + δs

(i)
j + s

(i)
j−1 + δs

(i)
j−1

)
− αhj

4
×

[(
u
(i)
j + δu

(i)
j + u

(i)
j−1 + δu

(i)
j−1

)(
s
(i)
j + δs

(i)
j + s

(i)
j−1 + δs

(i)
j−1

)]
+

+
αhj
2
sn−1
j−1/2

(
u
(i)
j + δu

(i)
j + u

(i)
j−1 + δu

(i)
j−1

)
− αhj

2
un−1
j−1/2×(

s
(i)
j + δs

(i)
j + s

(i)
j−1 + δs

(i)
j−1

)
− αhj

2
fn−1
j−1/2

(
t
(i)
j + δt

(i)
j + t

(i)
j−1 + δt

(i)
j−1

)
+

αhj
2
tn−1
j−1/2

(
f
(i)
j + δf

(i)
j + f

(i)
j−1 + δf

(i)
j−1

)
= [R2]

n−1
j−1/2 ,

(30e)
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Next we drop the terms that are quadratic in the following
(
δf

(i)
j , δu

(i)
j , δv

(i)
j , δs

(i)
j , δt

(i)
j

)
.

We also drop the superscript for simplicity. After some algebraic manipulations,
the following linear tridiagonal system of equations is obtained:

δfj − δfj−1 −
hj
2

(δuj + δuj−1) = (r1)j−1/2, (31a)

δuj − δuj−1 −
hj
2

(δvj + δvj−1) = (r2)j−1/2, (31b)

δsj − δsj−1 −
hj
2

(δtj + δtj−1) = (r3)j−1/2, (31c)

(a1)jδvj + (a2)jδvj−1 + (a3)jδfj + (a4)jδfj−1 + (a5)jδuj + (a6)jδuj−1

+(a7)jδsj + (a8)jδsj−1 = (r4)j−1/2,
(31d)

(b1)jδtj + (b2)jδtj−1 + (b3)jδfj + (b4)jδfj−1 + (b5)jδuj + (b6)jδuj−1

+(b7)jδsj + (b8)jδsj−1 + (b9)jδvj + (b10)jδvj−1 = (r5)j−1/2,
(31e)

Where

(a1)j = 1 + hj

[
(1 + α)

2
fj−1/2 −

α

2
fn−1
j−1/2

]

(a2)j = −1 + hj

[
(1 + α)

2
fj−1/2 −

α

2
fn−1
j−1/2

]
,

(a3)j = hj

[
(1 + α)

2
vj−1/2 +

α

2
vn−1
j−1/2

]
, (a4)j = (a3)j ,

(a5)j = hj

[
− (1 + α+ ξΛ)uj−1/2 −

1

2

(
M +

1

DaGr1/22

)]
, (a6)j = (a5)j ,

(a7)j =
B

2
hj , (a8)j = (a7)j (32)

(b1)j =
1

Pr
+ hj

[
(1 + α)

2
fj−1/2 −

α

2
fn−1
j−1/2

]
,

(b2)j = − 1

Pr
+ hj

[
(1 + α)

2
fj−1/2 −

α

2
fn−1
j−1/2

]
,
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(b3)j = hj

[
(1 + α)

2
tj−1/2 +

α

2
tn−1
j−1/2

]
,

(b4)j = (b3)j , (b5)j = hj

[
Mξ2Ecuj−1/2 −

α

2
sj−1/2 +

α

2
sn−1
j−1/2

]
,

(b6)j = (b5)j , (b7)j = hj

[
−α
2
uj−1/2 −

α

2
un−1
j−1/2 +

Ω

2

]
, (b8)j = (b7)j ,

(b9)j =
[
hjξ

2Ecvj−1/2

]
, (b10)j = (b9)j , (33)

(r1)j−1/2 = fj−1 − fj + hjuj−1/2, (r2)j−1/2 = uj−1 − uj + hjvj−1/2,

(r3)j−1/2 = sj−1 − sj + hjtj−1/2,

(r4)j−1/2 = (vj−1 − vj)− (1 + α)hjfj−1/2vj−1/2 + hj (1 + α+ ξΛ)u2j−1/2+(
M +

1

DaGr1/2

)
hjuj−1/2 − αhjv

n−1
j−1/2fj−1/2 + αhjf

n−1
j−1/2vj−1/2−

Bhj
[
sj−1/2

]
+ (R1)

n−1
j−1/2 ,

(r5)j−1/2 =
1

Pr
(tj−1 − tj)− (1 + α)hjfj−1/2tj−1/2 − ξ2hjEc

[
(v)2 +M (u)2

]
−

Ωhjs+ hjαuj−1/2sj−1/2 − αhjs
n−1
j−1/2uj−1/2 + αhju

n−1
j−1/2sj−1/2+

αhjf
n−1
j−1/2tj−1/2 − αhjt

n−1
j−1/2fj−1/2 + (R2)

n−1
j−1/2 ,

(34)

To complete the system (31), we recall the boundary conditions (25), which
can be satisfied exactly with no iteration. Therefore to maintain these correct
values in all the iterates, we take:

δf0 = 0, δu0 = 0, δsn0 = 0, δuJ = 0, δsJ = 0 (35)

Phase d) Block-tridiagonal Elimination of Linear Keller Algebraic
Equations
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To linear system (31) can now be solved by the block-elimination method.
The linearized difference equations of the system (31) have a block-tridiagonal
structure. Commonly, the block-tridiagonal structure consists of variables or
constants, but here, an interesting feature can be observed that is, for the Keller-
box method, it consists of block matrices. Before we can proceed further with
the block-elimination method, we will show how to get the elements of the block
matrices from the linear system (31). We consider three cases, namely when j
= 1, J-1 and J. When j = 1, the linear systems (31) become:

δf1 − δf0 −
h1
2

(δu1 + δu0) = (r1)1−1/2, (36a)

δu1 − δu0 −
hj
2

(δv1 + δv0) = (r2)1−1/2, (36b)

δs1 − δs0 −
hj
2

(δt1 + δt0) = (r3)1−1/2, (36c)

(a1)1δv1 + (a2)1δv0 + (a3)1δf1 + (a4)1δf0 + (a5)1δu1 + (a6)1δu0
+(a7)1δs1 + (a8)1δs0 = (r4)1−1/2,

(36d)

(b1)1δt1 + (b2)1δt0 + (b3)1δf1 + (b4)1δf0 + (b5)1δu1 + (b6)1δu0+
(b7)1δs1 + (b8)1δs0 + (b9)1δv1 + (b10)1δv0 = (r5)1−1/2,

(36e)

Designating d1 = −1
2h1, and δf0 = 0, δu0 = 0, δs0 = 0, δg0 = 0 the corre-

sponding matrix form assumes:


0 0 1 0 0
d1 0 0 d1 0
0 d1 0 0 d1

(a2)1 0 (a3)1 (a1)1 0
(b10)1 (b2)1 (b3)1 (b9)1 (b1)1



δv0
δt0
δf1
δv1
δt1

+


d1 0 0 0 0
1 0 0 0 0
0 1 0 0 0

(a5)1 (a7)1 0 0 0
(b5)1 (b7)1 0 0 0



δv1
δs1
δf2
δv2
δt2

 =


(r1)1−(1/2)

(r2)1−(1/2)

(r3)1−(1/2)

(r4)1−(1/2)

(r5)1−(1/2)

 (37)
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For j = 1, we have [A1] [δ1] + [C1] [δ2] = [r1]. Similar procedures are fol-
lowed at the different stations. Effectively the seven linearized finite difference
equations have the the matrix-vector form:

Θδj = ζj (38)

where Θ = Keller coefficient matrix of order 5 x 5, δj = fifthth order vector for
errors (perturbation) quantities and ζj= fifthth order vector for Keller residuals.
This system is then recast as an expanded matrix-vector system, viz:

ς jδj − ωjδj = ζj (39)

where now ς j = coefficient matrix of order 5 x 5, ωj = coefficient matrix of order
5 x 5 and ζj= fifthth order vector of errors (iterates) at previous station on grid.
Finally the complete linearized system is formulated as a block matrix system
where each element in the coefficient matrix is a matrix itself. The numerical
results are affected by the number of mesh points in both directions. Accurate
results are produced by performing a mesh sensitivity analysis. After some trials
in the η-direction a larger number of mesh points are selected whereas in the ξ
direction significantly less mesh points are utilized. The edge of the boundary-
layer y∞ was adjusted for different range of parameters. xmax is set in the range
[0, π] for this flow domain.

4 Results and discussion

Selected computations have been conducted to study the influence Forchheimer
inertial Drag parameter (Λ), Darcy number (Da), Eckert number (Ec) and heat
source/sink parameter (Ω) . In all computations we desire the variation of f ′and
θ versus η (radial coordinate) for the velocity, temperature and species diffusion
boundary layers, and also 1

2Cf
4
√
Gr = ξf ′′(ξ, 0) and Nu

4√Gr
= −θ′(ξ, 0) versus

ξ as a simulation of skin friction function and Nusselt number function with
tangential coordinate.

Figure 4 depicts the velocity response(f ′)to various Forchheimer inertial
drag parameter (Λ), with radial coordinate η. The Forchheimer drag force term,
-ξΛf /2 in the dimensionless momentum conservation equation (5) is quadratic
and with an increase in Λ (which is infact related to the geometry of the porous
medium) will increase correspondingly. As such the impedance offered by the
fibers of the porous medium will increase and this will effectively decelerate the
flow in the regime, as testified to by the evident decrease in velocities shown in
Figure 4 . The Forchheimer effect serves to super seed the Darcian body force
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effect at higher velocities, the latter is dominant for lower velocity regimes and is
a linear body force. The former is dominated the lower velocities (the square of
a low velocity yields an even lower velocity) but becomes increasingly dominant
with increasing momentum in the flow i.e. when inertial effects override the
viscous effects (Figure 4 ).

ξ
−θ′(ξ, 0)
Merkin K.A Yih Present Results

0.0 0.4212 0.4214 0.4214

0.2 0.4204 0.4207 0.4210

0.4 0.4182 0.4184 0.4191

0.6 0.4145 0.4147 0.4153

0.8 0.4093 0.4096 0.4102

1.0 0.4025 0.4030 0.4135

1.2 0.3942 0.3950 0.3966

1.4 0.3843 0.3854 0.3870

1.6 0.3727 0.3740 0.3758

1.8 0.3594 0.3608 0.3617

2.0 0.3443 0.3457 0.3468

2.2 0.3270 0.3283 0.3298

2.4 0.3073 0.3086 0.3103

2.6 0.2847 0.2860 0.2891

2.8 0.2581 0.2595 0.2620

3.0 0.2252 0.2267 0.2312

π 0.1963 0.1962 0.1921

Table 1: Comparision of the values of −θ′(ξ, 0) with M = 0 and Pr = 1

Figure 5 shows that temperature θ, is increased continuously through
the boundary layer with distance from the cylinder surface, with an increase
in Λ, since with flow deceleration, heat will be diffused more effectively via
thermal conduction and convection. The boundary layer regime will therefore be
warmed with increasing Λ and boundary layer thickness will be correspondingly
increased, compared with velocity boundary layer thickness, the latter being
reduced.
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Figure 4: Effect of the Λ on the velocity profiles
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Figure 5: Effect of the Λ on the temperature profiles

Figures 6 show the effect of the Darcy number (Da) on dimensionless
velocity (f ′) with transformed radial coordinate (ξ)at a location close to the lower
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stagnation point (ξ = 0.1). Da = K
a2

for a fixed value of the cylinder radius, a,
and free convection parameter, Gr (Grashof number) is directly proportional to
permeability, K, of the porous regime. In the momentum conservation equation
(5), the Darcian drag term, −

(
1
Da

)
f ′, is inversely proportional to Da. Increasing

Da increases the porous medium permeability and simultaneously decreases the
Darcian impedance since progressively less solid fibers are present in the regime.
The flow is therefore accelerated for higher Da values causing an increase in the
velocity,(f ′) as shown in figure 6. Maximum effect of rising Darcy number is
observed at intermediate distance from the cylinder surface around η ∼ 1. We
note that the profiles all correspond to a location some distance from the lower
stagnation point on the cylinder at ξ = 0.5. Conversely temperature, θ depicted
in figure 6 is opposed by increasing Darcy number. The presence of fewer solid
fibers in the regime with increasing Da, inhibits the thermal conduction in the
medium which reduces distribution of thermal energy. The regime is therefore
cooled when more fluid is present and θ values in the thermal boundary layer are
decreased. Profiles for both velocity and temperature are smoothly asymptotic
decays to the free stream indicating that excellent convergence (and stability) is
obtained with the numerical method. Velocity boundary layer thickness will be
increased with a rise in Da and thermal boundary layer thickness reduced.
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Figure 6: Effect of the Da on the velocity profiles
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Figure 7: Effect of the Gr on the velocity profiles

The effects of thermal Grashof number Gr are shown in figure 7 to
8 for the velocity, f ′ , temperature, θ, distributions. Figure 7 indicates that
an increasing Gr from 10 through 20,50, 100,200,300, and 500 strongly boosts
velocity. The profiles generally descend smoothly towards zero although the
rate of descend is greater corresponding to higher thermal Grashof numbers. Gr
defines the ratio of thermal buoyancy force to the viscous hydrodynamic force
and as expected does accelerate the flow. Temperature distribution θ versus η is
plotted in figure 8 and is seen to decrease with a rise in thermal Grashof number,
results which agree with fundamental studies on free convection.

The influence of heat source (Ω > 0) or heat sink (Ω < 0) in the boundary
layer on the velocity and temperature fields is presented in figures 9 and 10.
The presence of heat source in the boundary layer generates energy which cases
the temperature of the fluid to increase. This increasing temperature produces
an increase in the flow field due to buoyancy effect. On the other hand, the
presence of a heat sink in the boundary layer absorbs energy which causes the
temperature of the fluid to decrease. This decrease in the fluid temperature
causes a reduction in the flow velocity in the boundary layer as a result of the
buoyancy effect which couples the flow and thermal problems. These behaviors
are depicted in Figures 9 and 10.



Computational analysis of viscous dissipation and ... 59

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

 

 

 1.0,Pr 0.7, 1.0, 1.0
0.01, 0.1, 0.5

Da M
Ec

= = = =
Ω = Λ = =

 10,20,50,100,200,300,500Gr =

Figure 8: Effect of the Gr on the temperature profiles
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Figure 9: Effect of the Ω on the velocity profiles.
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Figure 10: Effect of the Ω on the temperature profiles.
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Figure 11: Effect of the Ec on the velocity profiles

The influence of the Eckert number i.e. viscous dissipation parameter (Ec)
on velocity and temperature profiles is illustrated in figures 11 and 12. Ec ex-
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presses the relationship between the kinetic energy in the flow and the enthalpy
(Schlichting boundary layer theory). It embodies the conversion of kinetic energy
into internal energy by work done against the viscous fluid stresses. Although
this parameter is often used in high speed compressible flow, for example in
rocket aerodynamics at very altitude, it has significance in high temperature
incompressible flows, which are encountered in chemical engineering systems,
radioactive waste repositories, nuclear engineering systems etc. Positive Eck-
ert number implies cooling of the wall and therefore a transfer of heat to the
fluid. Convection is enhanced and we observe in consistency with for example
Schlichting and Gersten [47], that the fluid is accelerated i.e. velocity of the fluid
is increased as shown in figure 11. Temperatures are boosted as shown in figure
12. Since internal energy is increased.
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Figure 12: Effect of the Ec on the temperature profiles

Figs.13 to 14 depict the velocity, temperature transverse to the cylinder wall
for various stream wise coordinate values, ξ. Velocity is clearly decelerated with
increasing migration from the leading edge i.e. larger ξ values (Fig. 13) for some
distance into the boundary layer, transverse to the wall (η ∼ 30). However
closer to the free stream, this effect is reversed and the flow is accelerated with
increasing distance along the cylinder surface. Conversely a very strong increase
in temperature (θ), as shown in Figs.14, occurs with increasing ξ values. Also
unlike the velocity response which ascends from the surface of the cylinder, peaks
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and then decreases further into the boundary layer (Fig.13), the temperature
fields decrease continuously across the boundary layer transverse to the wall.
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Figure 13: Effect of the ξ on the velocity profiles
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Figure 14: Effect of the ξ on the temperature profiles
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Temperature and concentration are both minimized at the leading edge and
maximized with the greatest distances along the cylinder surface from the leading
edge.
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Figure 15: Effect of Λ on the Skin friction coefficient results.

The influence of porosity, Forchheimer parameter on local skin friction at the
cylinder surface (-f//) with tangential coordinate,ξ, are shown respectively in
figure 15. Shear stress is progressively enhanced with a rise in ε, but decreased
with increasing Λ and M , again confirming that more porous regimes retard the
flow less, whereas increasing inertial drag and magnetic field serve to decelerate
the flow and reduce shear stresses at the cylinder surface.

Figure 16 to 18 show f ′′ (ξ, 0) and − θ′ (ξ, 0) for various values of the
Eckert number Ec and heat source/sink parameterΩ. It is seen that the values of
f ′′ (ξ, 0) increases with increasing the Eckert number Ec and the heat source/sink
parameterΩ. On the other hand, enhancing the Eckert number Ec and the heat
source/sink parameterΩ reduces the value of−θ′ (ξ, 0). This is because that Ec
or Ω produces larger dimensionless wall velocity gradient and dimensionless wall
temperature.
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Figure 16: Effect of Ω on the Skin friction coefficient results
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Figure 17: Effect of Ω on the local Nusselt number results
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Figure 18: Effect of Ec on the local Nusselt number results

5 Conclusions

A steady, two-dimensional boundary layer model has been developed for the
hydromagnetic viscous flow, heat transfer from a permeable horizontal cylinder,
embedded in an isotropic, homogenous, non-Darcian regime, including viscous
dissipation and Joule heating effects. A robust, efficient implicit finite difference
method introduced by Keller [34] has been implemented to solve the transformed
boundary layer equations. Several special cases have been considered. Extensive
details of the discretization and matrix algebraic solution procedures have been
included. The computations have shown that:

i Increasing magnetic field serves to decelerate the flow and enhance temperature
values.

ii Increasing Darcy number accelerates the flow but reduces concentration val-
ues.

iii Increasing Forchheimer parameter causes a strong deceleration in the flow.

iv Increasing viscous dissipation parameter acts to accelerate the flow and also
enhance temperature values.
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v Increasing heat source/sink parameter enhances velocity and also increase
temperature values.

vi Increasing Eckert number Ec and heat source/sink parameterΩ reduces the
local heat transfer rate (local Nusselt number) at the cylinder surface with
the opposite effect sustained for the local skin friction result.
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Računska analiza efekata viskozne disipacije i džulovskog
zagrevanja na nedarsijevsko MHD prirodno konvektivno tečenje

sa horizontalnog cilindra u poroznoj sredini uz unutrašnje
generisanje toplote

Ispitani su uticaji viskozne disipacije, džulovskog zagrevanja i toplotnih izvora
(ili ponora) na nedarsijevsko MHD prirodno konvektivno tečenje preko pro-
pustljivog horizontalnog cilindra u poroznoj sredini. Jednačine graničnog sloja,
parabolične, su normalizovane u nesličan oblik i, potom, rešene numerički pomoću
dobro proverene efikasne implicitne i stabilne Keller-ove kutije šeme konačnih ra-
zlika. Izvedena je parametarska studija koja ilustruje uticaj Darcy-jevog parame-
tra (Da), Forchheimer-ovog parametra (Λ) , Grashof-ovog broja(Gr), parame-
tra toplotnog izvora/ponora (Ω) kao i parametra viskozne disipacije (Ec) na
brzinu fluida, temperaturu, lokalno trenje na zidu kao i Nusselt-ove brojeve.
Povećanje Forchheimer-ovog inercijalnog parametra otpora (Λ) vodi ka kašnjenju
tečenja ali značajno povećava temperature. Nadjeno je da povećanje parametra
viskozne disipacije (Ec) povećava brzine tj. ubrzava tečenje i povećava tem-
perature. Takodje je nadjeno da povećanje parametra toplotnog izvora/ponora
(Ω) povećava brzine i izaziva povećanje temperatura. Porast Grashof-ovog broja
(Gr) vodi ka rastu brzine i opadanju temeperatura. Broj lokalnog trenja na zidu
raste sa porastom parametra toplotnog izvora/ponora (Ω), gde lokalni Nusselt-ov
broj opada sa porastom parametra toplotnog izvora/ponora (Ω).
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