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ABSTRACT

In this article, we investigate the nonlinear steady boundary layer flow and heat transfer of an incompressible
Tangent Hyperbolicnon-Newtonian fluid from a vertical porous plate. The transformed conservation
equations are solved numerically subject to physically appropriate boundary conditions using a second-order
accurate implicit finite-difference Keller Box technique. The numerical code is validated with previous
studies. The influence of a number of emerging non-dimensional parameters, namely the Weissenberg
number (W,), the power law index (#), Prandtl number (Pr), Biot number (y), and dimensionless local suction
parameter(&)on velocity and temperature evolution in the boundary layer regime are examined in detail.
Furthermore the effects of these parameters on surface heat transfer rate and local skin friction are also
investigated. Validation with earlier Newtonian studies is presented and excellent correlation achieved. It is
found that velocity, Skin friction and Nusselt number (heat transfer rate) are reduced with increasing
Weissenberg number (#,), whereas, temperature is enhanced. Increasing power law index (n) enhances
velocity and Nusselt number (heat transfer rate) but temperature and Skin friction decrease. An increase in
the Biot number (y) is observed to enhance velocity, temperature, local skin friction and Nusselt number. An
increasing Prandtl number, Pr, is found to decrease both velocity, temperature and skin friction but elevates
heat transfer rate (Nusselt number). The study is relevant to chemical materials processing applications.

Keywords: Non-newtonian fluid; Tangent hyperbolic fluid; Boundary layers; Skin friction; Nusselt number;
Weissenberg number; The power law index; Biot number.

NOMENCLATURE
By constant Magnetic Field Intensity a thermal diffusivity
C skin friction coefficient n dimensionless radial coordinate
f non-dimensional stream function P dynamic viscosity
Gr Grashof number . L .
. . 14 kinematic viscosity
g acceleration due to gravity di ional t t
k thermal conductivity of fluid 0 non-. mensiona empe.ra ure.
n power law index o density of non-Newtonian fluid
Nu local Nusselt number ¢ local suction parameter
Pr Prandtl number v dimensionless stream function
T temperature of the fluid y Biot number
held non-dimensional  velocity corppor}ents r time dependent material constant
along the x- and y- directions, . . .
. I1 second invariant strain tensor
respectively
A% velocity vector Subscripts
Vo traqspiration velocity w surface conditions on plate (wall)
We. Welssenberg numt?er 0 free stream conditions
X stream wise coordinate

transverse coordinate
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1. INTRODUCTION

The dynamics of non-Newtonian fluids has been a
popular area of research owing to ever-increasing
applications in chemical and process engineering.
Examples of such fluids include coal-oil slurries,
shampoo, paints, clay coating and suspensions,
grease, cosmetic products, custard, physiological
liquids (blood, bile, synovial fluid) etc. The
classical equations employed in simulating
Newtonian viscous flows i.e. the Navier—Stokes
equations fail to simulate a number of critical
characteristics of non-Newtonian fluids. Hence
several constitutive equations of non-Newtonian
fluids have been presented over the past decades.
The relationship between the shear stress and rate of
strain in such fluids are very complicated in
comparison to viscous fluids. The viscoelastic
features in non-Newtonian fluids add more
complexities in the resulting equations when
compared  with  Navier-Stokes  equations.
Significant attention has been directed at
mathematical and numerical simulation of non-
Newtonian fluids. Recent investigations have
implemented, respectively the Casson model
(2013), second-order Reiner-Rivlin differential fluid
models (2013), power-law nanoscale models
(2013), Eringen micro-morphic models (2011) and
Jefferys viscoelastic model (2013).

Convective heat transfer has also mobilized
substantial interest owing to its importance in
industrial and  environmental technologies
including energy storage, gas turbines, nuclear
plants, rocket propulsion, geothermal reservoirs,
photovoltaic panels etc. The convective boundary
condition has also attracted some interest and this
usually is simulated via a Biot number in the wall
thermal boundary condition. Recently, Ishak
(2010) discussed the similarity solutions for flow
and heat transfer over a permeable surface with
convective boundary condition. Aziz (2009)
provided a similarity solution for laminar thermal
boundary layer over a flat surface with a
convective surface boundary condition. Aziz
(2010) further studied hydrodynamic and thermal
slip flow boundary layers with an iso-flux thermal
boundary condition. The buoyancy effects on
thermal boundary layer over a vertical plate
subject a convective surface boundary condition
was studied by Makinde and Olanrewaju (2010).
Further recent analyses include Makinde and Aziz
(2010). Gupta et al. (2013) used a variational
finite element to simulate mixed convective-
radiative micropolar shrinking sheet flow with a
convective boundary condition. Makinde et al.
(2012) studied cross diffusion effects and Biot
number influence on hydromagnetic Newtonian
boundary layer flow with homogenous chemical
reactions and MAPLE quadrature routines. Bég et
al. (2013) analyzed Biot number and buoyancy
effects on magnetohydrodynamic thermal slip
flows. Subhashini et al. (2011) studied wall
transpiration and cross diffusion effects on free
convection boundary layers with a convective
boundary condition.

Convective boundary-layer flows are often
controlled by injecting or withdrawing fluid through
a porous bounding heat surface. This can lead to
enhanced heating or cooling of the system and can
help to delay the transition from laminar to
turbulent flow. The case of uniform suction and
blowing through an isothermal vertical wall was
treated first by Sparrow and Cess (1961); they
obtained a series solution which is valid near the
leading edge. This problem was considered in more
detail by Merkin (1972), who obtained asymptotic
solutions, valid at large distances from the leading
edge, for both the suction and blowing. Using the
method of matched asymptotic expansion, the next
order corrections to the boundary-layer solutions for
this problem were obtained by Clarke (1973), who
extended the range of applicability of the analyses
by not invoking the usual Boussinesq
approximation. The effect of strong suction and
blowing from general body shapes which admit a
similarity solution has been given by Merkin
(1975). A transformation of the equations for
general blowing and wall temperature variations has
been given by Vedhanayagam et al. (1980). The
case of a heated isothermal horizontal surface with
transpiration has been discussed in some detail first
by Clarke and Riley (1975, 1976) and then more
recently by Lin and Yu (1988). Hossain e al.
(2001) studied the effect of radiation on free
convection flow with variable viscosity from a
vertical porous plate.

An interesting non-Newtonian model developed for
chemical engineering systems is the Tangent
Hyperbolic fluid model. This rheological model has
certain advantages over the other non-Newtonian
formulations, including simplicity, ease of
computation and physical robustness. Furthermore
it is deduced from kinetic theory of liquids rather
than the empirical relation. Several communications
utilizing the Tangent Hyperbolic fluid model have
been presented in the scientific literature. There is
no single non-Newtonian model that exhibits all the
properties of non-Newtonian fluids. Among several
non-Newtonian fluids, hyperbolic tangent model is
one of the non-Newtonian models presented by
Popand Ingham (2001). Nadeem et al. (2009) made
a detailed study on the peristaltic transport of a
hyperbolic tangent fluidin an asymmetric channel.
Nadeem and Akram (2011) investigated the
peristaltic flow of a MHD hyperbolic tangent fluid
in a vertical asymmetric channel with heat transfer.
Akram and Nadeem (2012) analyzed the influence
of heat and mass transfer on the peristaltic flow of a
hyperbolic tangent fluid in an asymmetric channel.
Very recently, Akbar et al. (2013) analyzed the
numerical solutions of MHD boundary layer flow of
tangent hyperbolic fluid on a stretching sheet.

The objective of the present study is to investigate
the laminar boundary layer flow and heat transfer
of a Tangent Hyperbolic non-Newtonian fluid past
a vertical porous plate. The non-dimensional
equations with associated dimensionless boundary
conditions constitute a highly nonlinear, coupled
two-point boundary value problem. Keller’s
implicit finite difference “box” scheme is
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implemented to solve the problem (2012). The
effects of the emerging thermophysical
parameters, namely the Weissenberg number (W,),
power law index (n),Biot number (y) and Prandtl
number (Pr), on the velocity, temperature, skin
friction number, and heat transfer rate (local
Nusselt number) characteristics are studied. The
present problem has to the authors’ knowledge not
appeared thus far in the scientific literature and is
relevant to polymeric manufacturing processes in
chemical engineering.

2. NON-NEWTONIAN CONSTITUTIVE
TANGENT HYPERBOLIC FLUID
MODEL

In the present study a subclass of non-Newtonian
fluids known as the Tangent Hyperbolic fluid is
employed owing to its simplicity. The Cauchy
stress tensor, in theTangent Hyperbolic non-
Newtonian fluid [24] takes the form:

—anl -
T= ﬂw+(uo+ﬂw)tanh[F?] y ey

where Tis extra stress tensor, [, is the infinite

shear rate viscosity, ff is the zero shear rate

viscosity, I is the time dependent material
constant, n is the power law index i.e. flow
behaviour index and yis defined as

low 1
222757 =™
i

Where

@

2
I =%tr(gde +(gradv )T ) . We

consider Eqn. (1), for the case when g,= 0

because it is not possible to discuss the problem for
the infinite shear rate viscosity and since we
considering tangent hyperbolic fluid that describing
shear thinning effects so T'y< 1. Then Eqn. (1)
takes the form

wenl[17] s [err-1]
_ﬂ{m[mﬂy

The introduction of the appropriate terms into the
flow model is considered next. The resulting
boundary value problem is found to be well-posed
and permits an excellent mechanism for the
assessment of rheological characteristics on the
flow behaviour.

3

3. MATHEMATICAL FLOW
MODEL
The steady, laminar, two-dimensional,

incompressible boundary layer flow and heat
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transfer of a Tangent Hyperbolic fluid past a
vertical porous plate is considered, as illustrated in
Fig. 1. Both the plate and Tangent Hyperbolic fluid
are maintained initially at the same temperature.
Instantaneously they are raised to a temperature T

>Tw,the ambient temperature of the fluid which

remains unchanged. In line with the approach of
Yih (2000) and introducing the boundary layer
approximations, the equations for mass, momentum,
and energy, can be written as follows:

a—u+a—v:0 4)
ox Oy
2
ua—”+v6—u=v(1—n)a—L;+
Ox oy oy )
2
ﬁvnra—”a—‘;+gﬂ(T ~T,)
oy oy
or or &
x 1 .
. <« 0O . )
m{‘fm o Bourjdary laygrs .
0 - v
—] ; 1
B, ¢1° =
[— «— 0O
N _
¢ oy

Fig. 1. Physical Model and Coordinate System.

where # and V are the velocity components in the
X - and y- directions respectively, is the v=/p

kinematic viscosity of the Tangent Hyperbolic fluid,
Yij is the coefficient of thermal expansion, ¢ is the

thermal diffusivity, 7 is the temperature, p is the
density of the fluid. The Tangent Hyperbolic fluid
model therefore introduces a mixed derivative
(second order, first degree) into the momentum
boundary layer equation (5). The non-Newtonian
effects feature in the shear terms only of eqn. (5)
and not the convective (acceleration) terms. The
third term on the right hand side of eqn. (5)
represents the thermal buoyancy force and couples
the velocity field with the temperature field
equation (6).

Aty =0, u=0,v =0, —ka—T:hW (Tw

oy

u—>0, T >T,

—T)

As y = o,

0

Here T, is the free stream temperature, k is the
thermal conductivity, /£, is the convective heat
T

w s the convective fluid

transfer coefficient,
temperature. The stream function y is defined by
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0

=Y and v =¥
oy Ox

continuity equation is automatically satisfied. In

order to render the governing equations and the

boundary conditions in dimensionless form, the

u and therefore, the

following  non-dimensional  quantities  are
introduced.
VoX o -4 Y ~ 14 T -T,
= Gr, ,n==—Gr,"",0(&,n)= ,
s v i x (577) T, -T,
1 1%
y = 4vyGry (f (6,77)+Z§J, Pr=—
®)
42vrGr ¥4 gB(T, ~T,)x>
W&‘ = 2 > G}" = 2
x 4v

All terms are defined in the nomenclature. In view
of the transformation defined in eqn. (8), the
boundary layer eqns. (5)-(7) are reduced to the
following coupled, nonlinear, dimensionless partial
differential equations for momentum and energy for
the regime:

(1=n)f "+(3f + &) "-2(r )

. Lo o ©)

+nWw "m0 -= LRCAN S NC AN
nWef "f e‘(f oz / 85)
0" 00 of
—+(3f +&)0'= '——-0'— 10
o (3 +9) éf[f o¢ ag] (10)
The  transformed  dimensionless  boundary
conditions are:

0!
At n=0, f=0, f'=0, O=1+—

4
As n—o, f'—50, -0 (11)

Here primes denote the differentiation with respect

ton and y = %er—m is the Biot number. The

wall thermal boundary condition in (11)
corresponds to convective cooling. The skin-friction
coefficient (shear stress at the plate surface) and
Nusselt number (heat transfer rate) can be defined
using the transformations described above with the
following expressions.

Le=34c, —(1-n)r .00+ 2w, (1 "£,0))

4 - e

(12)
Gr V4Nu =-6'(£,0) (13)
In the vicinity of the lower stagnation point, £~
Oand the boundary layer equations (9) -

(10)contract to a system of ordinay differential
equations:

(1=n)f ™300 "=2(f 'Y +nWf "f "+6=0
(14)

9"

S 0'=0 (15)
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The general model is solved using a powerful and
unconditionally stable finite difference technique
introduced by Keller (1978). The Keller-box
method has a second order accuracy with arbitrary
spacing and attractive extrapolation features.

4. NUMERICAL SOLUTION WITH

KELLER BOX IMPLICT
METHOD
The Keller-Box implicit difference method is

implemented to solve the nonlinear boundary value
problem defined by eqns. (9)—(10) with boundary
conditions (11). This technique, despite recent
developments in other numerical methods, remains a
powerful and very accurate approach for parabolic
boundary layer flows. It is unconditionally stable and
achieves exceptional accuracy (1978). Recently this
method has been deployed in resolving many
challenging, multi-physical fluid dynamics problems.
These include hydromagnetic Sakiadis flow of non-
Newtonian fluids (2009), nanofluid transport from a
stretching sheet (2011), radiative rheological magnetic
heat transfer (2009), water hammer modelling (2005),
porous media convection (2008) and magnetized
viscoelastic stagnation flows (2009). The Keller-Box
discretization is fully coupled at each step which
reflects the physics of parabolic systems — which are
also fully coupled. Discrete calculus associated with
the Keller-Box scheme has also been shown to be
fundamentally different from all other mimetic
(physics capturing) numerical methods, as elaborated
by Keller [31]. The Keller Box Scheme comprises four
stages.

1) Reduction of the N order partial differential
equation system to N first order equations.

2) Finite Difference Discretization.

3) Quasilinearization of Non-Liner Keller Algebraic
Equations.

4) Block-Tridiagonal Elimination of Linear Keller
Algebraic Equations.

5. NUMERICAL RESULTS AND
INTERPRETATION

Comprehensive solutions have been obtained and
are presented in Tables 1-4 and Figs. 2 - 7. The
numerical problem comprises two independent
variables (&7), two dependent fluid dynamic
variables (f,6) and five thermo-physical and body
force control parameters, namely, We, n, vy, Pr, &
The following default parameter values i.e. We =
03,n=0.3,y=0.2, Pr=0.71, & 1.0are prescribed
(unless otherwise stated). Furthermore the influence
of local suction parameter on heat transfer
characteristics is also investigated.

In Table 1, we present the influence of the
Weissenberg number (W,) on the Skin friction and
heat transfer rate, along with a variation in § .

Increasing W, is found to reduce the Skin friction.
For large values of W,, the skin friction is negative.
And increasing W,, also reduces the heat transfer
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Table 1 Values of C; and Nu for different W, and £&(Pr=0.71,n=0.3,y=0.2)

£=1.0 £=2.0 £=3.0
We
Cr Nu Cr Nu Cr Nu
0.0 1.1596 0.2846 0.8958 0.4861 0.6109 0.7205
0.5 1.0685 0.2842 0.8380 0.4860 0.5833 0.7204
1.0 0.9897 0.2839 0.7873 0.4657 0.5583 0.6995
5.0 0.5871 0.2815 0.5150 0.4415 0.4107 0.6733
10.0 0.3167 0.2804 0.3108 0.4211 0.2959 0.6523
15.0 0.1436 0.2790 0.1333 0.3994 0.1267 0.6262
20.0 0.0026 0.2780 -0.0084 0.3777 -0.0021 0.6051
25.0 -0.0813 0.2771 -0.0800 0.3550 -0.1077 0.5790

Table 2 Values of C; and Nu for different n and £(Pr = 0.71, W, =0.3,y=0.2)

£=1.0 £=2.0 £=3.0
n
Gr Nu G Nu Gr Nu
0.0 1.2047 0.2803 0.8979 0.4856 0.6105 0.7204
0.1 1.1783 0.2816 0.8898 0.4857 0.6071 0.7204
0.2 1.1454 0.2829 0.8780 0.4859 0.6006 0.7205
0.3 1.1032 0.2844 0.8602 0.4860 0.5940 0.7205
0.4 1.0460 0.2859 0.8328 0.4863 0.5812 0.7205
0.5 0.9650 0.2876 0.7881 0.4865 0.5596 0.7206
0.6 0.8433 0.2893 0.7122 0.4868 0.5209 0.7206
0.7 0.6506 0.2912 0.5776 0.4870 0.4477 0.7207
0.8 0.3322 0.2931 0.3311 0.4870 0.2999 0.7208

rate. Increasing & decreases the Skin friction.
Whereas increasingf increases the heat transfer
rate. ’

Table2document results for the influence of the
power law index (n) on skin friction and heat
transfer rate along with a variation in f LIt s

observed that the increasing n, decreases Skin
friction but increases heat transfer rate. Whereas

increasingf , decreases the Skin friction but
increases the Nusselt number.

Table 3 presents the influence of the Biot number

1301

(y) on skin friction and heat transfer rate along with
a variation in f . It is observed that the increasing
Y, increases both the Skin friction and heat transfer
rate. And increasing c_‘f , decreases Skin friction but
increases heat transfer rate.

Table 4 documents results for the influence of the
Prandtl number (Pr) on skin friction and heat
transfer rate along with a variation in & . It is

observed that the increasing Pr, decelerates Skin
friction but accelerates heat transfer rate. And

increasinggz , decreases the Skin friction but
increases the heat transfer rate.
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Table 3 Values of C; and Nu for differenty and £&(Pr=0.71, n = 0.3, W, =0.3)

E=1.0 £=2.0 £=3.0
Y
Cr Nu Cr Nu Cr Nu
0.2 1.1032 0.2844 0.8602 0.4860 0.5940 0.7205
0.3 1.5940 0.4979 1.3561 0.8176 0.9738 1.2012
0.4 1.8114 0.6090 1.5815 0.9862 1.1585 1.4412
0.5 1.9350 0.6769 1.7106 1.0882 1.2676 1.5863
0.6 2.0150 0.7226 1.7945 1.1565 1.3396 1.6820
0.7 2.0710 0.7555 1.8533 1.2054 1.3905 1.7503
0.8 2.1124 0.7802 1.8968 1.2422 1.4295 1.8020
0.9 2.1443 0.7996 1.9315 1.2710 1.4592 1.8421
1.0 2.1693 0.8150 1.9580 1.2939 1.4827 1.8741

Table 4 Values of C; and Nu for different Pr and (W, =0.3,n=0.3,y=0.2)

£E=1.0 £=2.0 £=3.0
Pr
Cr Nu Cr Nu Cr Nu

0.5 1.2598 0.2184 1.1381 0.3483 0.8359 0.5076
0.7 1.1098 0.2810 0.8711 0.4794 0.6024 0.7103
1.0 1.1718 0.5101 0.8242 0.9097 0.5620 1.3522
2.0 0.7641 0.9396 0.4174 1.8147 0.2817 2.7003
3.0 0.5353 1.3392 0.2775 2.7195 0.1895 4.0472
5.0 0.3212 2.3163 0.1637 4.5291 0.1090 6.7423
7.0 0.2268 3.2426 0.1139 6.3409 0.0748 9.4408
8.0 0.1969 3.7064 0.0981 7.2470 0.0638 10.7911
10.0 0.1543 4.6360 0.0752 9.0596 0.0478 13.4891

Figures 2(a) — 2(b) depict the velocity (f ') and

temperature () distributions ~ with  increasing

Weissenberg number, We. Very little tangible effect
is observed in fig. 2a, although there is a very slight
decrease in velocity with increase in We.
Conversely, there is only a very slight increase in
temperature magnitudes in Fig. 2(b) with a rise in
We. The mathematical model reduces to the
Newtonian viscous flow model as W,— 0 and n— 0.
The momentum boundary layer equation in this
case contracts to the familiar equation for
Newtonian mixed convection from a plate, viz.

f m+(3f +§)f n_zf/z +0
o' g
PR
o~ og
The thermal boundary layer equation (10) remains

unchanged.

Figures 3(a) - 3(b) illustrates the effect of the power
law index, n,on the velocity (f ') and temperature

() distributions  through the boundary layer

regime. Velocity is increased with increasing n.
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Conversely temperature is consistently reduced with
increasing values of ».

O\ n=03Pr=07L=10,y=02
\
IIII
012 - |
“ | W,=0, 1.5, 10, 15,20, 25
I,
I."
006 - ||
”ill \\
Ld
o T
0 2 4 o 8 10

Fig. 2. (a) Influence of W, on Velocity Profiles.

n=03,Pr=071,2=1.0,y=02

@ W.=0,1,5 10, 15,20, 25
AN A
N /

0.11 A ,-‘
AN,

A

/ \\

0 4 —
0 2 4 n [ 8

Fig. 2. (b) Influence of We on Temperature
Profiles.

0.24

We=03,Pr=071.£=1.0,y=02

7=0.0,02,03,04,05,06,08

, A

)
b
=

o ' ————
n 9

0 3 6
Fig. 3. (a) Influence of n on Velocity Profiles.

We=03,Pr=071,£=10,y=02

* n=00,0.1,0.3,0.5,0.6,0.7, 0.8
011 /
¢ .
0 ='=-...______‘__\__ — —
0 2 4 n [ 8
Fig. 3. (b) Influence of n on Temperature
Profiles.

Figures 4(a) - 4(b) depict the evolution of velocity

(/') and temperature () functions with a variation
in Biot number, » . Dimensionless velocity

component (fig. 4a) is considerably enhanced with
increasing ¥ . In fig. 4b, an increase in Biot number

is seen to considerably enhance temperatures

throughout the boundary layer regime. For y< [ i.e.
small Biot numbers, the regime is frequently
designated as being “thermally simple” and there is
a presence of more uniform temperature fields
inside the boundary layer and the plate solid
surface. For p> I thermal fields are anticipated to
be non-uniform within the solid body. The Biot
number effectively furnishes a mechanism for
comparing the conduction resistance within a solid
body to the convection resistance external to that
body (offered by the surrounding fluid) for heat
transfer. We also note that a Biot number in excess
of 0.1, as studied in figs. 4a, b corresponds to a
"thermally thick" substance whereas Biot number
less than 0.1 implies a “thermally thin” material.
Since y is inversely proportional to thermal
conductivity (k), as y increases, thermal
conductivity will be reduced at the plate surface and
this will lead to a decrease in the rate of heat
transfer from the boundary layer to within the plate,
manifesting in a rise in temperature at the plate
surface and in the body of the fluid- the maximum
effect will be sustained at the surface, as witnessed
in fig. 4b. However for a fixed wall convection
coefficient and thermal conductivity, Biot number
xh,, GrV4
k

as defined in y= is also directly

inversely proportional to the local Grashof (free
convection) number. As local Grashof number
increases generally the enhancement in buoyancy
causes a deceleration in boundary layer flows [40 -
42]; however as Biot number increases, the local
Grashof number must decreases and this will induce
the opposite effect i.e. accelerate the boundary layer
flow, as shown in fig. 4a.

0.28

W.=03.n=03Pr=071.£= 10

021 - |
ol \ v=0.2,03,0.4,0.5,0.7,0.8, 1.0
A
0.14 '\ f
\ /
0.07 .."I
o
o 3 n 6 9

Fig. 4. (a) Influence of y on Velocity Profiles.

We=03,n=03,Pr=071L,5~ 10

ks -3

051
¥=0.2,03,04,050708, 1.0
0.34 ;'”'
/
017 /
/ \
’ 0 2 4 n 6 8
Fig. 4. (b) Influence of y on Temperature
Profiles.

Figures 5(a) — 5(b) depicts the profiles for velocity
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(f') and temperature(@) for various values of

Prandtl number, Pr. It is observed that an increase
in the Prandtl number significantly decelerates the
flow i.e., velocity decreases. And increasing

Prandtl number is found to decelerate the
temperature.
0.2 -
We=03n=03y=02Z2=10
o Pr=05,071,1,2,3,57
= /
.'l
0.1 ,'I
/
0.05 /
f
| 4 N‘"“-_ ~
0 —
0 : 4 n s E 10

Fig. 5.(a) Influence of Pr on Velocity Profiles.

0.44 ¢ 1
We=03,n=03,v=02,£~1.0

© Pr=05,071,1,2,3,5,7
0.22 ,-*'r
.'l|l.l
.‘lIII
0.11 )
/
[Vt v — - —
o 2 4 n o g
Fig. 5. (b) Influence of Pr on Temperature
Profiles.

Figures 6(a) — 6(b) depicts the velocity ( f ’) and
temperature (§) distributions with radial coordinate,

for various local suction parameter values, & along
with the variation in the Weissenberg number (W,).
Clearly, from these figures it can be seen that as
suction parameter & increases, the maximum fluid
velocity decreases. This is due to the fact that the
effect of the suction is to take away the warm fluid
on the vertical plate and thereby decrease the
maximum velocity with a decrease in the intensity
of the natural convection rate. Fig. 6(b) shows the
effect of the local suction parameter on the
temperature profiles. It is noticed that the
temperature profiles decrease with an increase in
the suction parameter and as the suction is
increased, more warm fluid is taken away and this
the thermal boundary layer thickness decreases. It
is also seen that an increase in W,, the impedance
offered by the fibers of the porous medium will
increase and this will effectively decelerate the flow
in the regime, as testified to by the evident decrease
in velocities shown in fig. 6(a).

Figures 7(a) — 7(b) depict the velocity (f) and

temperature (€) distributions ~ with  radial

coordinate, for various local suction parameter
values, & along with the variation in the power law

index (n).Clearly, from these figures it can be seen
that as suction parameter & increases, the maximum
fluid velocity decreases. This is due to the fact that
the effect of the suction is to take away the warm
fluid on the vertical plate and thereby decrease the
maximum velocity with a decrease in the intensity
of the natural convection rate. Fig. 7(b) shows the
effect of the local suction parameter on the
temperature profiles. It is noticed that the
temperature profiles decrease with an increase in
the suction parameter and as the suction is
increased, more warm fluid is taken away and this
the thermal boundary layer thickness decreases. It
is also seen that an increase in n, the impedance
offered by the fibers of the porous medium will
increase and this will effectively decelerate the flow
in the regime, as testified to by the evident decrease
in velocities shown in fig. 7(a).
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6. CONCLUSIONS

Numerical solutions have been presented for the
buoyancy-driven flow and heat transfer of Tangent
Hyperbolic flow external to a vertical porous plate.
The Keller-box implicit second order accurate finite
difference numerical scheme has been utilized to
efficiently solve the transformed, dimensionless
velocity and thermal boundary layer equations,
subject to realistic boundary conditions. Excellent
correlation with previous studies has been
demonstrated testifying to the validity of the present
code. The computations have shown that:

1. Increasing Weissenberg number, W,, reduces the
velocity, skin friction (surface shear stress) and
heat transfer rate, whereas it elevates
temperature in the boundary layer.
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2. Increasing power law index, n, increases the
velocity and Nusselt number for all values of
radial coordinate i.e., throughout the boundary
layer regime whereas it depresses temperature
and skin friction.

3. Increasing Biot number, y, increases velocity,
temperature, skin friction (surface shear stress)
and heat transfer rate.

4. Increasing Prandtl number, Pr, decreases
velocity, temperature and skin friction but
increases heat transfer rate (Nusselt number).

5. Increasing transverse coordinate (¢) along with
increase in the Weissenberg number (W),
generally decelerates the flow near the plate
surface and reduces momentum boundary layer
thickness and also reduces temperature and
therefore decreases thermal boundary layer
thickness in Tangent Hyperbolic non-
Newtonian fluids.

6. Increasing transverse coordinate (&) along with
increase in the power law index (n), generally
decelerates the flow near the plate surface and
reduces momentum boundary layer thickness
and also reduces temperature and therefore
decreases thermal boundary layer thickness in
Tangent Hyperbolic non-Newtonian fluids.
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Fig. 7. (b) Influence of § and on Temperature
Profiles.

Generally very stable and accurate solutions are
obtained with the present finite difference code. The
numerical code is able to solve nonlinear boundary
layer equations very efficiently and therefore shows
excellent promise in simulating transport
phenomena in other non-Newtonian fluids.
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