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ABSTRACT 

In this article, we investigate the nonlinear steady boundary layer flow and heat transfer of an incompressible 
Tangent Hyperbolicnon-Newtonian fluid from a vertical porous plate.  The transformed conservation 
equations are solved numerically subject to physically appropriate boundary conditions using a second-order 
accurate implicit finite-difference Keller Box technique.  The numerical code is validated with previous 
studies.  The influence of a number of emerging non-dimensional parameters, namely the Weissenberg 
number (We), the power law index (n), Prandtl number (Pr), Biot number (), and dimensionless local suction 
parameter()on velocity and temperature evolution in the boundary layer regime are examined in detail. 
Furthermore the effects of these parameters on surface heat transfer rate and local skin friction are also 
investigated.  Validation with earlier Newtonian studies is presented and excellent correlation achieved.  It is 
found that velocity, Skin friction and Nusselt number (heat transfer rate) are reduced with increasing 
Weissenberg number (We), whereas, temperature is enhanced. Increasing power law index (n) enhances 
velocity and Nusselt number (heat transfer rate) but temperature and Skin friction decrease.  An increase in 
the Biot number () is observed to enhance velocity, temperature, local skin friction and Nusselt number. An 
increasing Prandtl number, Pr, is found to decrease both velocity, temperature and skin friction but elevates 
heat transfer rate (Nusselt number). The study is relevant to chemical materials processing applications. 

Keywords: Non-newtonian fluid; Tangent hyperbolic fluid; Boundary layers; Skin friction; Nusselt number; 
Weissenberg number; The power law index; Biot number. 

NOMENCLATURE 

B0 constant Magnetic Field Intensity 
Cf skin friction coefficient 
f non-dimensional stream function 
Gr Grashof number 
g acceleration due to gravity 
k thermal conductivity of fluid 
n power law index 
Nu local Nusselt number 
Pr Prandtl number 
T temperature of the fluid 
u, v non-dimensional velocity components 

along the x- and y- directions, 
respectively 

V velocity vector 
V0 transpiration velocity 
We Weissenberg number 
x stream wise coordinate 
y transverse coordinate 

  thermal diffusivity 
  dimensionless radial coordinate  

  dynamic viscosity 

 kinematic viscosity

 non-dimensional temperature
  density of non-Newtonian fluid 

  local suction parameter 

  dimensionless stream function 

  Biot number 

  time dependent material constant 
  second invariant strain tensor 

Subscripts 
w surface conditions on plate (wall) 
 free stream conditions 
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1. INTRODUCTION 

The dynamics of non-Newtonian fluids has been a 
popular area of research owing to ever-increasing 
applications in chemical and process engineering.  
Examples of such fluids include coal-oil slurries, 
shampoo, paints, clay coating and suspensions, 
grease, cosmetic products, custard, physiological 
liquids (blood, bile, synovial fluid) etc. The 
classical equations employed in simulating 
Newtonian viscous flows i.e. the Navier–Stokes 
equations fail to simulate a number of critical 
characteristics of non-Newtonian fluids. Hence 
several constitutive equations of non-Newtonian 
fluids have been presented over the past decades. 
The relationship between the shear stress and rate of 
strain in such fluids are very complicated in 
comparison to viscous fluids. The viscoelastic 
features in non-Newtonian fluids add more 
complexities in the resulting equations when 
compared with Navier–Stokes equations.  
Significant attention has been directed at 
mathematical and numerical simulation of non-
Newtonian fluids. Recent investigations have 
implemented, respectively the Casson model 
(2013), second-order Reiner-Rivlin differential fluid 
models (2013), power-law nanoscale models 
(2013), Eringen micro-morphic models (2011) and 
Jefferys viscoelastic model (2013). 

Convective heat transfer has also mobilized 
substantial interest owing to its importance in 
industrial and environmental technologies 
including energy storage, gas turbines, nuclear 
plants, rocket propulsion, geothermal reservoirs, 
photovoltaic panels etc.  The convective boundary 
condition has also attracted some interest and this 
usually is simulated via a Biot number in the wall 
thermal boundary condition. Recently, Ishak 
(2010) discussed the similarity solutions for flow 
and heat transfer over a permeable surface with 
convective boundary condition. Aziz (2009) 
provided a similarity solution for laminar thermal 
boundary layer over a flat surface with a 
convective surface boundary condition. Aziz 
(2010) further studied hydrodynamic and thermal 
slip flow boundary layers with an iso-flux thermal 
boundary condition. The buoyancy effects on 
thermal boundary layer over a vertical plate 
subject a convective surface boundary condition 
was studied by Makinde and Olanrewaju (2010). 
Further recent analyses include Makinde and Aziz 
(2010). Gupta et al. (2013) used a variational 
finite element to simulate mixed convective-
radiative micropolar shrinking sheet flow with a 
convective boundary condition. Makinde et al. 
(2012) studied cross diffusion effects and Biot 
number influence on hydromagnetic Newtonian 
boundary layer flow with homogenous chemical 
reactions and MAPLE quadrature routines. Bég et 
al. (2013) analyzed Biot number and buoyancy 
effects on magnetohydrodynamic thermal slip 
flows. Subhashini et al. (2011) studied wall 
transpiration and cross diffusion effects on free 
convection boundary layers with a convective 
boundary condition.  

Convective boundary-layer flows are often 
controlled by injecting or withdrawing fluid through 
a porous bounding heat surface. This can lead to 
enhanced heating or cooling of the system and can 
help to delay the transition from laminar to 
turbulent flow.  The case of uniform suction and 
blowing through an isothermal vertical wall was 
treated first by Sparrow and Cess (1961); they 
obtained a series solution which is valid near the 
leading edge. This problem was considered in more 
detail by Merkin (1972), who obtained asymptotic 
solutions, valid at large distances from the leading 
edge, for both the suction and blowing. Using the 
method of matched asymptotic expansion, the next 
order corrections to the boundary-layer solutions for 
this problem were obtained by Clarke (1973), who 
extended the range of applicability of the analyses 
by not invoking the usual Boussinesq 
approximation. The effect of strong suction and 
blowing from general body shapes which admit a 
similarity solution has been given by Merkin 
(1975). A transformation of the equations for 
general blowing and wall temperature variations has 
been given by Vedhanayagam et al. (1980). The 
case of a heated isothermal horizontal surface with 
transpiration has been discussed in some detail first 
by Clarke and Riley (1975, 1976) and then more 
recently by Lin and Yu (1988). Hossain et al. 
(2001) studied the effect of radiation on free 
convection flow with variable viscosity from a 
vertical porous plate. 

An interesting non-Newtonian model developed for 
chemical engineering systems is the Tangent 
Hyperbolic fluid model. This rheological model has 
certain advantages over the other non-Newtonian 
formulations, including simplicity, ease of 
computation and physical robustness. Furthermore 
it is deduced from kinetic theory of liquids rather 
than the empirical relation. Several communications 
utilizing the Tangent Hyperbolic fluid model have 
been presented in the scientific literature. There is 
no single non-Newtonian model that exhibits all the 
properties of non-Newtonian fluids. Among several 
non-Newtonian fluids, hyperbolic tangent model is 
one of the non-Newtonian models presented by 
Popand Ingham (2001). Nadeem et al. (2009) made 
a detailed study on the peristaltic transport of a 
hyperbolic tangent fluidin an asymmetric channel. 
Nadeem and Akram (2011) investigated the 
peristaltic flow of a MHD hyperbolic tangent fluid 
in a vertical asymmetric channel with heat transfer. 
Akram and Nadeem (2012) analyzed the influence 
of heat and mass transfer on the peristaltic flow of a 
hyperbolic tangent fluid in an asymmetric channel.  
Very recently, Akbar et al. (2013) analyzed the 
numerical solutions of MHD boundary layer flow of 
tangent hyperbolic fluid on a stretching sheet. 

The objective of the present study is to investigate 
the laminar boundary layer flow and heat transfer 
of a Tangent Hyperbolic non-Newtonian fluid past 
a vertical porous plate. The non-dimensional 
equations with associated dimensionless boundary 
conditions constitute a highly nonlinear, coupled 
two-point boundary value problem.  Keller’s 
implicit finite difference “box” scheme is 



V. Ramachan
 

implemented 
effects of 
parameters, n
power law in
number (Pr)
friction num
Nusselt num
present probl
appeared thu
relevant to p
chemical eng

2. NON
TA
MO

In the presen
fluids known
employed ow
stress tensor
Newtonian flu

 0  


 


where  is e

shear rate v

viscosity, 
constant, n 
behaviour ind

. 1

2 i j

  

Where 

consider Eqn

because it is n
the infinite 
considering ta
shear thinnin
takes the form

.

0

0 1 n

  



    
 
 
  

 

The introduc
flow model 
boundary val
and permits 
assessment o
flow behaviou

3. MA
MO

The stead
incompressib

ndra Prasad et a

to solve the 
the emer

namely the We
ndex (n),Biot n
, on the velo

mber, and hea
mber) character

lem has to the 
us far in the sci
polymeric manu
gineering. 

N-NEWTONIA
ANGENT HY
ODEL 

nt study a subc
n as the Tange
wing to its si
r, in theTang
uid [24] takes t

0 tanh 

 



extra stress ten

iscosity, 0  

  is the tim
is the power

dex and is defi

. . 1

2ij ji   

1

2
tr gra 

n. (1), for th

not possible to 
shear rate vi

angent hyperbo
ng effects so 
m 

.

0

. .

1

1

n

 

 

       
   

 
 
 

tion of the app
is considered

lue problem is 
an excellent

of rheological 
ur. 

ATHEMATIC
ODEL 

dy, lamina
le boundary 

al. / JAFM, Vol

problem (20
rging thermo
issenberg numb

number ( ) and
city, temperatu
at transfer rat
istics are stud
authors’ knowl
ientific literatu
ufacturing proc

AN CONSTIT
YPERBOLIC

class of non-N
ent Hyperbolic
implicity. The 
gent Hyperbo
the form:   

. .
n

 
 


 

     

sor,   is the

is the zero sh

me dependent 
r law index i
fined as  

,                      

 adV gradV

e case when 

discuss the pro
iscosity and s
olic fluid that d
 < 1. Then 

. .
1

n

 
   

 

     

propriate terms
d next. The 
found to be w
t mechanism 
characteristics

CAL 

ar, two-dim
layer flow a

l. 9, No. 3, pp. 1

1299

12). The 
ophysical 
ber (We), 
d Prandtl 
ure, skin 
te (local 

died. The 
ledge not 

ure and is 
cesses in 

TUTIVE 
FLUID 

Newtonian 
c fluid is 

Cauchy 
lic non-

          (1) 

e infinite 

hear rate 

material 
i.e. flow 

          (2) 

 2 .T We 

 = 0 

oblem for 
since we 
describing 

Eqn. (1) 

          (3) 

s into the 
resulting 

well-posed 
for the 

s on the 

FLOW 

mensional, 
and heat 

t
v
F
a
I

r
Y
a
a

 

w

k

t
d
m
(
b
e
a
t
r
t
e

H

t

t

t

1297-1307, 201

transfer of a 
vertical porous 
Fig. 1. Both the
are maintained
Instantaneously

the ambie

remains unchan
Yih (2000) an
approximations
and energy, can

0
u v

x y

 
 

 

2

u u
u v

x y

u
n

y





 
 

 



 

T T
u v

x y

 
 

 

Fig. 1. Physic

where  and 

 - and y- dire

kinematic visco

  is the coeffi

thermal diffusiv
density of the 
model therefo
(second order, 
boundary layer
effects feature 
and not the co
third term on 
represents the t
the velocity 
equation (6).  

At  0,y u

As  ,y  

Here T  is the

thermal condu

transfer coeffic

temperature. Th

,T

u v
x

16.  

Tangent Hyp
plate is consid

e plate and Tan
d initially at th
y they are raised

ent temperature

nged.  In line 
nd introducing 
s, the equations
n be written as f

  

 



2

2

2

2

1
u

n
y

u
g T

y






 




 


2

2

T

y
 




  

cal Model and 
 

 are the veloc

ections respecti

osity of the Tan
cient of therma

vity, is the 
fluid. The Tan
re introduces 

first degree) 
r equation (5). 
in the shear te

onvective (acc
the right han

thermal buoyan
field with th

0, 0,v  

0,u T

e free stream te

uctivity, wh is 

cient, wT  is 

he stream func

v

T

perbolic fluid 
dered, as illustr
ngent Hyperbol
he same tempe
d to a temperat

e of the fluid 

with the appro
the boundary

 for mass, mom
follows:  

         

T





          

         

Coordinate Sy

city component

ively,  is the 
ngent Hyperboli
al expansion, 

temperature, 
ngent Hyperboli

a mixed der
into the mom
 The non-New

erms only of e
eleration) term
nd side of eq
ncy force and c
he temperature

w w
T

k h T
y





T           

emperature, k

the convectiv

the convectiv

ction ψ is defi



past a 
rated in 
ic fluid 
erature. 
ture 

which 

oach of 
y layer 

mentum, 

     (4) 

      (5)

      (6)

 

 
ystem. 

s in the 

  
ic fluid,

 is the 

 is the 
ic fluid 
rivative 
mentum 
wtonian 
eqn. (5) 
ms. The 
qn. (5) 
couples 
e field 

wT T

     (7)
 

 is the 

ve heat 

e fluid 

ned by  

wT





V. Ramachandra Prasad et al. / JAFM, Vol. 9, No. 3, pp. 1297-1307, 2016.  
 

1300 

u
y





and v
x


 


, and therefore, the 

continuity equation is automatically satisfied. In 
order to render the governing equations and the 
boundary conditions in dimensionless form, the 
following non-dimensional quantities are 

introduced. 
 

 1/4 1/40 , , , ,x x
w

V x y T T
Gr Gr

x T T
    


 




  



 

 

4

33/4

2 2

1
4 , , Pr

4

4 2
,

4

x

wx
e

Gr f

g T T xGr
W Gr

x

    







    
 


      

 (8)

 

All terms are defined in the nomenclature.  In view 
of the transformation defined in eqn. (8), the 
boundary layer eqns. (5)-(7) are reduced to the 
following coupled, nonlinear, dimensionless partial 
differential equations for momentum and energy for 
the regime: 
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The transformed dimensionless boundary 
conditions are: 

'
0, 0, ' 0, 1At f f

 

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Here primes denote the differentiation with respect 

to  and 1/4w
x

xh
Gr

k
   is the Biot number.  The 

wall thermal boundary condition in (11) 
corresponds to convective cooling. The skin-friction 
coefficient (shear stress at the plate surface) and 
Nusselt number (heat transfer rate) can be defined 
using the transformations described above with the 
following expressions.   

   23/41
1 ''( ,0) ''( ,0)

4 2f e
n

Gr C n f W f      

                                             (12) 

1/4 '( ,0)Gr Nu                   (13) 

In the vicinity of the lower stagnation point,  
0and the boundary layer equations (9) – 
(10)contract to a system of ordinay differential 
equations: 

   21 ''' 3 '' 2 ' '' ''' 0en f ff f nW f f        

                (14) 

''
3 ' 0

Pr
f

                   (15) 

The general model is solved using a powerful and 
unconditionally stable finite difference technique 
introduced by Keller (1978). The Keller-box 
method has a second order accuracy with arbitrary 
spacing and attractive extrapolation features. 

4. NUMERICAL SOLUTION WITH 
KELLER BOX IMPLICT 
METHOD 

The Keller-Box implicit difference method is 
implemented to solve the nonlinear boundary value 
problem defined by eqns. (9)–(10) with boundary 
conditions (11). This technique, despite recent 
developments in other numerical methods, remains a 
powerful and very accurate approach for parabolic 
boundary layer flows. It is unconditionally stable and 
achieves exceptional accuracy (1978). Recently this 
method has been deployed in resolving many 
challenging, multi-physical fluid dynamics problems. 
These include hydromagnetic Sakiadis flow of non-
Newtonian fluids (2009), nanofluid transport from a 
stretching sheet (2011), radiative rheological magnetic 
heat transfer (2009), water hammer modelling (2005), 
porous media convection (2008) and magnetized 
viscoelastic stagnation flows (2009). The Keller-Box 
discretization is fully coupled at each step which 
reflects the physics of parabolic systems – which are 
also fully coupled. Discrete calculus associated with 
the Keller-Box scheme has also been shown to be 
fundamentally different from all other mimetic 
(physics capturing) numerical methods, as elaborated 
by Keller [31]. The Keller Box Scheme comprises four 
stages. 

1) Reduction of the Nth order partial differential 
equation system to N first order equations. 

2) Finite Difference Discretization. 

3) Quasilinearization of Non-Liner Keller Algebraic 
Equations. 

4) Block-Tridiagonal Elimination of Linear Keller 
Algebraic Equations. 

5. NUMERICAL RESULTS AND 
INTERPRETATION  

Comprehensive solutions have been obtained and 
are presented in Tables 1-4 and Figs. 2 - 7. The 
numerical problem comprises two independent 
variables (,), two dependent fluid dynamic 
variables (f,) and five thermo-physical and body 
force control parameters, namely, We, n, γ, Pr, . 
The following default parameter values i.e. We = 
0.3, n = 0.3, γ= 0.2, Pr = 0.71, = 1.0are prescribed 
(unless otherwise stated). Furthermore the influence 
of local suction parameter on heat transfer 
characteristics is also investigated. 

In Table 1, we present the influence of the 
Weissenberg number (We) on the Skin friction and 

heat transfer rate, along with a variation in  . 

Increasing We is found to reduce the Skin friction. 
For large values of We, the skin friction is negative. 
And increasing We, also reduces the heat transfer  


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Table 1 Values of Cf and Nu for different We and (Pr = 0.71, n = 0.3,  = 0.2) 

We 
 = 1.0  = 2.0  = 3.0 

Cf Nu Cf Nu Cf Nu 

0.0 1.1596 0.2846 0.8958 0.4861 0.6109 0.7205 

0.5 1.0685 0.2842 0.8380 0.4860 0.5833 0.7204 

1.0 0.9897 0.2839 0.7873 0.4657 0.5583 0.6995 

5.0 0.5871 0.2815 0.5150 0.4415 0.4107 0.6733 

10.0 0.3167 0.2804 0.3108 0.4211 0.2959 0.6523 

15.0 0.1436 0.2790 0.1333 0.3994 0.1267 0.6262 

20.0 0.0026 0.2780 -0.0084 0.3777 -0.0021 0.6051 

25.0 -0.0813 0.2771 -0.0800 0.3550 -0.1077 0.5790 

 

Table 2 Values of Cf and Nu for different n and (Pr = 0.71, We = 0.3,  = 0.2) 

n 
 = 1.0  = 2.0  = 3.0 

Cf Nu Cf Nu Cf Nu 

0.0 1.2047 0.2803 0.8979 0.4856 0.6105 0.7204 

0.1 1.1783 0.2816 0.8898 0.4857 0.6071 0.7204 

0.2 1.1454 0.2829 0.8780 0.4859 0.6006 0.7205 

0.3 1.1032 0.2844 0.8602 0.4860 0.5940 0.7205 

0.4 1.0460 0.2859 0.8328 0.4863 0.5812 0.7205 

0.5 0.9650 0.2876 0.7881 0.4865 0.5596 0.7206 

0.6 0.8433 0.2893 0.7122 0.4868 0.5209 0.7206 

0.7 0.6506 0.2912 0.5776 0.4870 0.4477 0.7207 

0.8 0.3322 0.2931 0.3311 0.4870 0.2999 0.7208 
 

 

rate. Increasing decreases the Skin friction. 

Whereas increasing , increases the heat transfer 

rate. 

Table2document results for the influence of the 
power law index (n) on skin friction and heat 

transfer rate along with a variation in  . It is 

observed that the increasing n, decreases Skin 
friction but increases heat transfer rate. Whereas 

increasing , decreases the Skin friction but 

increases the Nusselt number.   

Table 3 presents the influence of the Biot number 

() on skin friction and heat transfer rate along with 

a variation in  . It is observed that the increasing 

, increases both the Skin friction and heat transfer 

rate.  And increasing , decreases Skin friction but 

increases heat transfer rate. 

Table 4 documents results for the influence of the 
Prandtl number (Pr) on skin friction and heat 

transfer rate along with a variation in  .  It is 

observed that the increasing Pr, decelerates Skin 
friction but accelerates heat transfer rate. And 

increasing , decreases the Skin friction but 

increases the heat transfer rate. 
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Table 3 Values of Cf and Nu for different  and (Pr = 0.71, n = 0.3, We = 0.3) 

 
 = 1.0  = 2.0  = 3.0 

Cf Nu Cf Nu Cf Nu 

0.2 1.1032 0.2844 0.8602 0.4860 0.5940 0.7205 

0.3 1.5940 0.4979 1.3561 0.8176 0.9738 1.2012 

0.4 1.8114 0.6090 1.5815 0.9862 1.1585 1.4412 

0.5 1.9350 0.6769 1.7106 1.0882 1.2676 1.5863 

0.6 2.0150 0.7226 1.7945 1.1565 1.3396 1.6820 

0.7 2.0710 0.7555 1.8533 1.2054 1.3905 1.7503 

0.8 2.1124 0.7802 1.8968 1.2422 1.4295 1.8020 

0.9 2.1443 0.7996 1.9315 1.2710 1.4592 1.8421 

1.0 2.1693 0.8150 1.9580 1.2939 1.4827 1.8741 

 
Table 4 Values of Cf and Nu for different Pr and (We = 0.3, n = 0.3,  = 0.2) 

Pr 
 = 1.0  = 2.0  = 3.0 

Cf Nu Cf Nu Cf Nu 

0.5 1.2598 0.2184 1.1381 0.3483 0.8359 0.5076 

0.7 1.1098 0.2810 0.8711 0.4794 0.6024 0.7103 

1.0 1.1718 0.5101 0.8242 0.9097 0.5620 1.3522 

2.0 0.7641 0.9396 0.4174 1.8147 0.2817 2.7003 

3.0 0.5353 1.3392 0.2775 2.7195 0.1895 4.0472 

5.0 0.3212 2.3163 0.1637 4.5291 0.1090 6.7423 

7.0 0.2268 3.2426 0.1139 6.3409 0.0748 9.4408 

8.0 0.1969 3.7064 0.0981 7.2470 0.0638 10.7911 

10.0 0.1543 4.6360 0.0752 9.0596 0.0478 13.4891 
 

 

Figures 2(a) – 2(b) depict the velocity  'f  and 

temperature   distributions with increasing 

Weissenberg number, We. Very little tangible effect 
is observed in fig. 2a, although there is a very slight 
decrease in velocity with increase in We. 
Conversely, there is only a very slight increase in 
temperature magnitudes in Fig. 2(b) with a rise in 
We. The mathematical model reduces to the 
Newtonian viscous flow model as We 0 and n 0.  
The momentum boundary layer equation in this 
case contracts to the familiar equation for 
Newtonian mixed convection from a plate, viz. 

  /2''' 3 '' 2

'
' ''

f f f f

f f
f f

 


 

   

  
    

.  

The thermal boundary layer equation (10) remains 
unchanged.   

Figures 3(a) - 3(b) illustrates the effect of the power 
law index, n,on the velocity  'f  and temperature

  distributions through the boundary layer 

regime. Velocity is increased with increasing n. 
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