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Abstract

An unsteady, two-dimensional, hydromagnetic, laminar free con-
vective boundary-layer flow of an incompressible, Newtonian, electrically-
conducting and radiating fluid past an infinite heated vertical
porous plate with heat and mass transfer is analyzed, by taking
into account the effect of viscous dissipation. The dimensionless
governing equations for this investigation are solved analytically
using two-term harmonic and non-harmonic functions. Numeri-
cal evaluation of the analytical results is performed and graphical
results for velocity, temperature and concentration profiles within
the boundary layer and tabulated results for the skin-friction coef-
ficient, Nusselt number and Sherwood number are presented and
discussed. It is observed that, when the radiation parameter in-
creases, the velocity and temperature decrease in the boundary
layer, whereas when thermal and solutal Grashof increases the ve-
locity increases.
Keywords: Radiation, viscous dissipation, heat and mass trans-
fer
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1 Introduction

Coupled heat and mass transfer (or double-diffusion) driven by buoy-
ancy, due to temperature and concentration variations in a saturated
porous medium, has several important applications in geothermal and
geophysical engineering such as the migration of moisture through the
air contained in fibrous insulation, the extraction of geothermal energy,
underground disposal of nuclear wastes, and the spreading of chemical
contaminants through water-saturated soil. Bejan and Khair [1] investi-
gated the vertical free convection boundary layer flow in porous media
owing to combined heat and mass transfer. The suction and blowing ef-
fects on free convection coupled heat and mass transfer over a vertical
plate in a saturated porous medium was studied by Raptis et al. [2] and
Lai and Kulacki [3] respectively.

Hydromagnetic flows and heat transfer have become more important
in recent years because of its varied applications in agriculture, engineer-
ing and petroleum industries. Raptis [4] studied mathematically the case
of time varying two-dimensional natural convective flow of an incompress-
ible, electrically conducting fluid along an infinite vertical porous plate
embedded in a porous medium. Soundalgekar [5] obtained approximate
solutions for two-dimensional flow of an incompressible viscous flow past
an infinite porous plate with constant suction velocity, the difference be-
tween the temperature of the plate and the free stream is moderately large
causing free convection currents. Takhar and Ram [6] studied the MHD
free convection heat transfer of water at 4˚C through a porous medium.
Soundalgekar et al. [7] analyzed the problem of free convection effects
on Stokes problem for a vertical plate under the action of transversely
applied magnetic field with mass transfer. Elbashbeshy [8] studied heat
and mass transfer along a vertical plate under the combined buoyancy
effects of thermal and species diffusion, in the presence of magnetic filed.

In all these investigations, the radiation effects are neglected. For
some industrial applications such as glass production and furnace design
and in space technology applications, such as cosmical flight aerodynam-
ics rocket, propulsion systems, plasma physics and spacecraft re-entry
aerothermodynamics which operate at higher temperatures, radiation ef-
fects can be significant. Alagoa et al. [9] studied radiative and free
convection effects on MHD flow through porous medium between infinite
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parallel plates with time-dependent suction. Bestman and Adjepong [10]
analyzed unsteady hydromagnetic free convection flow with radiative heat
transfer in a rotating fluid.

In all these investigations, the viscous dissipation is neglected. The
viscous dissipation heat in the natural convective flow is important, when
the flow field is of extreme size or at low temperature or in high gravita-
tional field. Gebhart [11] shown the importance of viscous dissipative heat
in free convection flow in the case of isothermal and constant heat flux
at the plate. Soundalgekar [12] analyzed the effect of viscous dissipative
heat on the two-dimensional unsteady, free convective flow past an infinite
vertical porous plate when the temperature oscillates in time and there
is constant suction at the plate. Israel Cookey et al. [13] investigated
the influence of viscous dissipation and radiation on unsteady MHD free
convection flow past an infinite heated vertical plate in a porous medium
with time dependent suction.

The objective of the present chapter is to study the radiation and mass
transfer effects on an unsteady two-dimensional laminar free convective
flow of a viscous, incompressible, electrically conducting fluid past vertical
a heated porous plate with suction, embedded in a porous medium, under
the influence of a uniform transverse magnetic field, by taking into ac-
count the effect of viscous dissipation. The equations of continuity, linear
momentum, energy and diffusion, which govern the flow field are solved
by using a regular perturbation method. The behaviour of the velocity,
temperature, concentration, skin-friction, Nusselt number and Sherwood
number has been discussed for variations in the physical parameters.

2 Mathematical analysis

An unsteady two-dimensional hydromagnetic laminar free convection bound-
ary layer flow of a viscous, incompressible, electrically conducting and
radiating fluid in an optically thin environment past an infinite heated
vertical porous plate, embedded in a uniform porous medium, in the pres-
ence of thermal and concentration buoyancy effects, is considered. The
x′- axis is taken along the vertical plate and the y′- axis normal to the
plate. A uniform magnetic field is applied in the direction perpendicular
to the plate. The fluid is assumed to be slightly conducting, and hence
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the magnetic Reynolds number is much less than unity and the induced
magnetic field is negligible in comparison with the transverse magnetic
field. It is further assumed that there is no applied voltage, so that elec-
tric field is absent. The level of concentration of foreign mass is assumed
to be low, so that the Soret and Dufour effects are negligible. Since the
plate is of infinite length, all the physical variables are functions of y′ and
t′ only. Now, under the usual Boussinesq’s approximation, the flow field
is governed by the following equations.

∂ v′

∂ y′
= 0 (2.1)

∂ u′

∂ t′
+ v′

∂ u′

∂ y′
=

∂U ′

∂ t′
+ ν

∂2 u′

∂ y′2

+ g β(T ′ − T ′
∞) + gβ∗(C ′ − C ′

∞) −
(

σµ2
eH

2
0

ρ
+

ν

K ′

)
(u′ − U ′) (2.2)

∂ T ′

∂ t′
+ v′

∂ T ′

∂ y′
=

k

ρ cp

[
∂2T ′

∂ y′2
− 1

k

∂ q′

∂ y′

]
+

ν

cp

(
∂ u′

∂ y′

)2

(2.3)

∂2q′

∂ y′2
− 3α2q′ − 16σ∗αT ′3

∞
∂ T ′

∂ y′
= 0 (2.4)

∂ C ′

∂ t′
+ v′

∂ C ′

∂ y′
= D

∂2 C ′

∂ y′2
(2.5)

where u′, v′ are the velocity components in x′,y′ directions respectively, t′-
the time, p′- the pressure, ρ - the fluid density, σ - the electrical conductiv-
ity of the fluid, ν - the kinematic viscosity, µe- the magnetic permeability,
K ′ - the permeability of the porous medium, g - the acceleration due to
gravity, β and β∗ - the thermal and concentration expansion coefficients,
T ′ - the temperature of the fluid in the boundary layer, T ′

∞ - the temper-
ature of the fluid far away from the plate,C ′ - the species concentration in
the boundary layer, C ′

∞ - the species concentration in the fluid far away
from the plate, H2

0 - the constant transverse magnetic field, k - the ther-
mal conductivity, q′- the radiative heat flux, σ∗- the Stefan- Boltzmann
constant and D - the mass diffusivity. The second and third terms on the
right hand side of the momentum equation (2) denote the thermal and
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concentration buoyancy effects respectively. Also, the second term on
right hand side of the energy equation (2.3) represents the radiative heat
flux and the third term represents viscous dissipation. Equation (2.4) is
the differential approximation for radiation under fairly broad realistic
assumptions. In one space coordinate y′, the radiative flux q′ satisfies
this nonlinear differential Equation [10].

The boundary conditions for the velocity, temperature, and concen-
tration fields are

u′ = 0, T ′ = Tw C ′ = Cw at y′ = 0

u′ = U ′(t′) = V0(1 + ε en′t′) , T ′ → T ′
∞, C ′ → C ′

∞ as y′ →∞ (2.6)

where T ′
w and C ′

w are the temperature and concentration of the plate
respectively. Equation (2.1) asserts that, the suction velocity at the plate
is either a constant or a function of time. Hence the suction velocity
normal to the plate is assumed to be of the form

v′ = −V0(1 + εA en′t′) (2.7)

where A is a real positive constant, ε is small such that ε << 1, and
εA << 1 and V0 is scale of suction velocity which is non-zero positive
constant. The negative sign indicates that the suction is towards the
plate.

Since the medium is optically thin with relatively low density and α
(absorption coefficient) << 1, the radiative heat flux given by Equation
(2.4), in the spirit of Cogley et al. [14] becomes

∂ q′

∂ y′
= 4α2(T ′ − T ′

∞) (2.8)

where

α2 =

∞∫

0

δλ
∂ B

∂ T ′ (2.9)

where B is Planck’s function.
In order to write the governing equations and the boundary condi-

tions in dimensionless form, the following non-dimensional quantities are
introduced.

y =
V0

ν
y′ , n =

4ν

V 2
0

n′, u =
u′

U0

, t =
V 2

0

4ν
t′ , v =

4ν

V 2
0

V ′, θ =
T ′ − T ′

∞
T ′

w − T ′∞
,
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C =
C ′ − C ′

∞
C ′

w − C ′∞
, χ2 =

v2

K ′V 2
0

, Pr =
µ cp

k
=

ν

α
, Sc =

ν

D
,

M2 =
µ2

eσH ′2
0

ρV 2
0

, Gr =
ν β g(T ′

w − T ′∞)

U0 V 2
0

, Gm =
νβ∗g(C ′

w − C ′∞)

U0V 2
0

,

Ec =
U2

0

cp(T ′
w − T ′∞)

, R2 =
4α2

ρ kcpV 2
0

(T ′
w − T ′∞) (2.10)

In view of Equations (2.4), (2.7), (2.8), (2.9) and (10), Equations (2),
(2.3) and (2.5) reduce to the following dimensionless form.

1

4

∂ u

∂ t
−(1+εA ent)

∂ u

∂ y
=

1

4

∂ U

∂ t
+

∂2u

∂ y2
+ Grθ + Gm C+(M2+χ2)(u−U)

(2.11)

1

4

∂ θ

∂ t
− (1 + εA ent)

∂ θ

∂ y
=

1

Pr

[
∂2θ

∂ y2
−R2

]
+ Ec

(
∂ u

∂ y

)2

(2.12)

1

4

∂ C

∂ t
− (1 + ε A ent)

∂ C

∂y
=

1

Sc

∂2C

∂ y2
(2.13)

where Gr,Gm, Pr,R,Ec and Sc are the thermal Grashof number, solutal
Grashof Number, Prandtl Number, radiation parameter, Eckert number
and the Schmidt number respectively.

The corresponding boundary conditions are

u = 0, θ = 1, C = 1 at y = 0

u → 1 + εent , θ → 0 , C → 0 as y →∞ (2.14)

3 Solution of the problem

Equations (2.11) - (2.13) represent coupled, non-linear partial differen-
tial equations, which cannot be solved in closed-form. So, in order to
solve these equations, we may represent the velocity, temperature and
concentration of the fluid in the neighbourhood of the plate as

u(y, t) = u0(y) + ε ent u1(y) + o(ε2) + ...
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θ(y, t) = θ0(y) + ε ent θ1(y) + o(ε2) + ... (3.1)

C(y, t) = C0(y) + ε ent C1(y) + o(ε2) + ...

Substituting (3.1) in Equations (2.11) - (2.13), and equating the har-
monic and non - harmonic terms, and neglecting the higher-order terms
of O (ε2), we obtain

u′′0 + u′0 − (χ2 + M2) u0 = −N − Gr θ0 − GmC0 (3.2)

u′′1 +u′1 − (χ2 +M2 +
n

4
) u1 = −(N +n) −Au′0 − Gr θ1− GmC1 (3.3)

θ′′0 + Pr θ′0 −R2θ0 = −Pr Ec(u′0)
2 (3.4)

θ′′1 + Pr θ′1 − (R +
n Pr

4
)θ1 = −Pr Aθ′0 − 2 Pr Ecu′0u

′
1 (3.5)

C ′′
0 + Sc C ′

0 = 0 (3.6)

C ′′
1 + Sc C ′

1 − nScC ′
1 = −ASc C ′

0 (3.7)

where prime denotes ordinary differentiation with respect to y. The cor-
responding boundary conditions can be written as

u0 = 0, u1 = 0 , θ0 = 1 , θ1 = 0 , C0 = 1 , C1 = 0 at y = 0

u0 = 1 , u1 = 1 , θ0 → 0 , θ1 → 0 , C0 → 0 , C1 → 0 as y →∞ (3.8)

The Equations (3.2) - (3.7) are still coupled non-linear equations,
whose exact solutions are not possible. So we expand u0, u1, θ0, θ1, C0, C1

in terms of Ec in the following way, as the Eckert number for incompress-
ible fluid is always very small.

u0(y) = u01(y) + Ec u02(y)

u1(y) = u11(y) + Ec u12(y)

θ0(y) = θ01(y) + Ec θ02(y)

θ1(y) = θ11(y) + Ec θ12(y)

C0(y) = C01(y) + Ec C02(y)
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C1(y) = C11(y) + Ec C12(y) (3.9)

Substituting (3.9) in Equations (3.2) - (3.7), equating the coefficients
of Ec to zero and neglecting the terms in Ec2 and higher order, we get
the following equations.

The zeroth order equations are

u′′01 + u′01 − (χ2 + M2) u01 = −(χ2 + M2) − Gr θ01 − Gm C01 (3.10)

u′′02 + u′02 − (χ2 + M2) u02 = −Gr θ02 − Gm C02 (3.11)

θ′′01 + Pr θ′01 −R2θ01 = 0 (3.12)

θ′′02 + Pr θ′02 −R2θ02 = −Pr u′201 (3.13)

C ′′
01 + Sc C ′

01 = 0 (3.14)

C ′′
02 + Sc C ′

02 = 0 (3.15)

and the respective boundary conditions are

u01 = 0, u02 = 0, θ01 = 1, θ02 = 0, C01 = 1, C02 = 0 at y = 0 (3.16)

u01 → 1, u02 → 0, θ01 → 0, θ02 → 0, C01 → 0, C02 → 0 as y →∞

The first order equations are

u′′11 + u′11 − N1 u11 = −N1 − Gr θ11 − GmC11 − Au′01 (3.17)

u′′12 + u′12 −N1 u12 = −Gr θ12 −GmC12 − Au′02 (3.18)

θ′′11 + Pr θ′11 −N2 θ11 = −A Pr θ′01 (3.19)

θ′′12 + Pr θ′12 −N2θ12 = −Pr Aθ′02 − 2 Pr u′01u
′
11 (3.20)

C ′′
11 + ScC ′

11 − nSc C11 = −AScC ′
01 (3.21)

C ′′
12 + Sc C ′

12 − nScC12 = −AScC ′
02 (3.22)

and the respective boundary conditions are

u11 = 0, u12 = 0, θ11 = 0, θ12 = 0, C11 = 0, C12 = 0 at y = 0
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u11 → 1, u12 → 0, θ11 → 0, θ12 → 0, C11 → 0, C12 → 0 as y →∞
(3.23)

where N1 = χ2 + M2 + n
4
, N2 = R2 + n Pr

4

Solving Equations (3.10) - (3.15) under the boundary conditions (3.16),
and Equations (3.17) - (3.22) under the boundary conditions (3.23), and
using Equations (3.9) and (3.1), we obtain the velocity, temperature and
concentration distributions in the boundary layer as

u(y, t) = P3e
−(m3y) + P1e

−m2y + P2e
−Scy + 1 +

Ec{J10e
−(m3y) + J1e

−m2y + J2e
−2m3y + J3e

−(2m2)y

+J4e
−2Scy + J5e

−(m2+m3)y + J6e
−(m2+Sc)y+

J7e
−(m3+Sc)y}+ εent[{D10e

−(m5y) + D6e
−m3y

+D7e
−m2y + D8e

−Scy + D9e
−m4y + D5e

−m1y + 1}
+Ec{Z20e

−m5y + Z1e
−m4y + Z2e

−m2y

+Z3e
−2m3y + Z4e

−m3y + Z5e
−2m2y+

Z6e
−2Scy + Z7e

−(m2+m3)y + Z8e
−(m2+Sc)y

+Z9e
−(m3+Sc)y + Z10e

−(m5+m3)y + Z11e
−(m4+m3)y

+Z12e
−(m2+m5)y + Z13e

−(m2+m4)y

+Z14e
−(m3+m4)y + Z15e

−(m5+Sc)y + Z16e
−(m1+m3)y+

Z17e
−(m1+m2)y + Z18e

−(m1+Sc)y}]
θ(y, t) = e−m2y + Ec{S7e

−m2y + S1e
−2m3y + S2e

−2m2y

+S3e
−2Scy + S4e

−(m3+m2)y + S5e
−(m2+Sc)y

+S6e
−(m3+Sc)y}+ εent[{D1 e−m2y −D2e

−m4y}
+Ec{G1e

−m2y + G2e
−2m3y

+G3e
−2m2y + G4e

−2Scy + G5e
−(m3+m2)y

+G6e
−(m2+Sc)y + G7e

−(m3+Sc)y+

+G8e
−(m3+m5)y + G9e

−(m3+m4)y + G10e
−(m5+m2)y

+G11e
−(m4+m2)y + G12e

−(m4+Sc)y

+G13e
−(m5+Sc)y + G14e

−(m1+m3)y + G15e
−(m2+m1)y
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+G16e
−(m1+Sc)y + G20e

−m4y}]

C(y, t) = e−Scy + εent

{
4ASc

n
(e−Scy − e−m1y)

}

where the expressions for the constants are given in Appendix.
The skin-friction, the Nusselt number and the Sherwood number are

important physical parameters for this type of boundary layer flow.
Knowing the velocity field, the skin-friction at the plate can be ob-

tained, which in non-dimensional form is given by

Cf =

(
µ

∂ u′

∂ y′

)

y′=0

=

(
∂ u

∂ y

)

y=0

=

(
∂ u0

∂ y
+ ε ent ∂ u1

∂ y

)

y=0

= −P3m3−P1m2−P2Sc+Ec {−J10m3−J1m2−2J2m3−2J3m2−2J4Sc

−J5(m2+m3)−J6(m2+Sc)−J7(m3+Sc)+ε ent[{−D10m5−D6m3−D7m2

−D8Sc−D9m4−D5m1}+Ec{−Z20m5−Z1m4−Z2m2−2Z3m3−Z4m3−2Z5m2

−2Z6Sc− Z7(m2 + m3)− Z8(m2 + Sc)− Z9(m3 + Sc)− Z10(m5 + m3)

−Z11(m4 + m3)− Z12(m2 + m5)− Z13(m2 + m4)− Z14(m3 + m4)

−Z15(m5 + Sc)− Z16(m1 + m3)− Z17(m1 + m2)− Z18(m1 + Sc)}]
Knowing the temperature field, the rate of heat transfer coefficient can

be obtained, which in the non-dimensional form, in terms of the Nusselt
number, is given by

Nu =
q′ν

kV0(T ′
w − T ′∞)

, where q′ = −k

(
∂ T ′

∂ y′

)

y′=0

= −
(

∂ θ

∂ y

)

y=0

= −
(

∂θ0

∂ y
+ ε ent ∂θ1

∂ y

)

y=0

= − (−m2+Ec{−S7m2−2S1m3−2S2m2−2S3Sc−S4(m3+m2)−S5(m2+Sc)

+ε ent[{−D1m2 + D1m4}+ Ec{−G1m2 − 2G2m3 − 2G3m2 − 2G4Sc

−G5(m2 + m3)−G6(m2 + Sc)−G7(m3 + Sc)−G8(m3 + m5)

−G9(m3 + m4)−G10(m2 + m5)−G11(m2 + m4)−G12(m4 + Sc)



Radiation and mass transfer... 145

−G13(m5 +Sc)−G14(m1 +m3)−G15(m1 +m2)−G16(m1 +Sc)−G20Sc]

Knowing the concentration field, the rate of mass transfer coefficient
can be obtained, which in the non-dimensional form, in terms of the
Sherwood number, is given by

Sh =
C∗ν

DV0(T ′
w − T ′∞)

, where C∗ = −D

(
∂ C ′

∂ y′

)

y′=0

= −
(

dC

d y

)

y=0

= −
(

∂ C0

∂ y
+ ε ent ∂ C1

∂ y

)

y=0

= −
[
−Sc + εent

{
4ASc

n
(−Sc + m1)

}]

4 Results and discussion

In the preceding sections, the problem of MHD unsteady free convec-
tive flow of a viscous, incompressible, radiating and dissipating fluid past
an infinite porous plate embedded in a porous medium was formulated
and solved by means of a perturbation method, by applying Cogley et
al. [14] approximation for the radiative heat flux. The expressions for
the velocity, temperature and concentration were obtained. To illustrate
the behaviour of these physical quantities, numerical values were com-
puted with respect to the variations in the governing parameters viz., the
thermal Grashof number Gr, the solutal Grashof number Gm, Prandtl
number Pr, Schmidt number Sc, the radiation parameter R and the Eck-
ert number Ec.

Fig.1 presents the typical velocity profiles in the boundary layer for
various values of the thermal Grashof number. It is observed that an in-
crease in Gr, leads to a rise in the values of velocity due to enhancement
in buoyancy force. Here the positive values of Gr correspond to cooling
of the surface. In addition, the curve show that the peak value of the
velocity increases rapidly near the wall of the porous plate as Grashof
number increases and then decays the free stream velocity. For the case
of different values of the solutal Grashof number, the velocity profiles in
the boundary layer are shown in Fig.2.The velocity distribution attains
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a distinctive maximum value in the vicinity of the plate and then de-
creases properly to approach a free stream value. As expected, the fluid
velocity increases and the peak value becomes more distinctive due to
increase in the buoyancy force represented by Gm. Figs.3(a) and 3(b)
display the effects of Schmidt number on the velocity and concentration
profiles respectively. As the Schmidt number increases, the concentration
decreases. This causes the concentration buoyancy effects to decrease
yielding a reduction in the fluid velocity. Reductions in the velocity and
concentration profiles are accompanied by simultaneous reductions in the
velocity and concentration boundary layers. These behaviors are evident
from Figs.3 (a) and 3(b).

For different values of the radiation parameter R, the velocity and
temperature profiles are plotted in Figs.4(a) and 4(b). It is obvious that
an increase in the radiation parameter results in decreasing velocity and
temperature within the boundary layer, as well as decrease the thickness
of the velocity and temperature boundary layers. For various values of the
magnetic parameter, the velocity profiles are plotted in Fig.5. It is obvious
that existence of the magnetic field decreases the velocity. Fig.6 shows
the velocity profiles for different values of the permeability parameter χ.
Clearly as χ increases, the velocity tends to decrease.

Figs.7(a) and 7(b) illustrate the velocity and temperature profiles for
different values of Prandtl number. The numerical results show that
the effect of increasing values of Prandtl number results in a decreasing
velocity. From Fig.7(b), the numerical results show that an increase in
the Prandtl number results a decrease of the thermal boundary layer and
in general lower average temperature with in the boundary layer. The
reason is that smaller values of Pr are equivalent to increase in the thermal
conductivity of the fluid and therefore heat is able to diffuse away from
the heated surface more rapidly for higher values of Pr. Hence in the case
of smaller Prandtl numbers the thermal boundary layer is thicker and the
rate of heat transfer is reduced.

The effects of the viscous dissipation parameter i.e., the Eckert number
on the velocity and temperature are shown in Figs.8(a) and 8(b). Greater
viscous dissipative heat causes a rise in the temperature as well as the
velocity profiles.

Tables 1-5 show the effects of the thermal Grashof Number, solutal
Grashof number, radiation parameter, the Schmidt number and Eckert
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number on the skin-friction Cf , the Nusselt number Nu, and the Sher-
wood numberSh. From Tables 1 and 2, it is observed that as Gr or
Gm increases, the skin-friction coefficient increases. However, from Ta-
ble 3, it can be easily seen that as radiation parameter increases, the
skin-friction decreases and the Nusselt number increases. From Table 4,
it is noticed that an increase in the Schmidt number reduces the skin-
friction and increases the Sherwood number. Finally, Table 5 shows that
as Eckert number increases, the skin-friction increases, the Nusselt num-
ber decreases.

0 1 2 3 4 5
0

0.25

0.50

0.75

1.00

1.25

1.50

y

u

Gr=0,1.0,2.0,3.0 
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M=1.0     R=0.5     t=1.0
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Figure 1: Effect of Gr on velocity.
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Figure 2: Effect of Gm on velocity

Gr Cf

0 2.5278
1 3.0197
2 3.4775
3 3.8868

Table 1: Effects of Gr on skin-friction for reference values in Fig.1

Gm Cf

0 2.8012
1 3.4775
2 4.1484
3 4.8138

Table 2: Effects of Gm on skin-friction for reference values in Fig.2.
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Figure 5: Effect of M on velocity

R Cf Nu
0.0 3.7670 0.6721
0.5 3.4775 1.1064
1.0 3.3291 1.3599
1.5 3.0956 1.4836

Table 3: Effects of radiation on skin-friction and Nusselt number for
reference values in Fig.4(a) and 4(b).

Sc Cf Sh
0.22 3.7316 0.2201
0.60 3.4775 0.6018
0.78 3.3980 0.7804
0.94 3.3400 0.9403

Table 4: Effects of Sc on skin-friction and Sherwood number for reference
values in Fig.3 (a) and 3(b).



152 V. Ramachandra Prasad, N. Bhaskar Reddy

0 1 2 3 4 5 6
0  

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

u

χ=0.1,0.5,1.0,2.0 

Gr=2.0 Gm=1.0 Pr=0.71
Sc=0.6  n=0.1    t=1.0
R=0.5   M=1.0   A=0.01
Ec=0.001

             
                     

ε=0.001 

Figure 6: Effect of χ on velocity.

Ec Cf Nu
0 1.6302 3.3396
0.001 1.4836 3.0956
0.01 0.1644 0.8996

Table 5: Effects of Ec on skin-friction and Nusselt number for reference
values in Fig.8(a) and 8(b).
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Appendix

m1 =
Sc +

√
Sc2 + 4nSc

2
, m2 =

Pr +
√

Pr2 +4R2

2
,

m3 =
1 +

√
1 + 4(χ2 + M2)

2
, m4 =

Pr +
√

Pr2 +4N2

2
,

m5 =
1 +

√
1 + 4N1

2
.

P2 =
−Gm

Sc2 − Sc− (χ + M)
, P3 = P1 + P2 − 1.

S1 =
−Pr m2

3P
2
3

4m2
3 − 2 Pr m3 −R

, S2 =
−Pr m2

2P
2
1

4m2
2 − 2 Pr m2 −R

,

S3 =
−Pr Sc2P 2

2

4Sc2 − 2 Pr Sc−R
, S4 =

2 Pr m3P3P1m2

(m3 + m2)2 − Pr(m3 + m2)−R
,

S5 = − −2 Pr m3P2P1Sc

(m2 + Sc)2 − Pr(m2 + Sc)−R
,
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S6 =
2 Pr m3P3P2Sc

(m3 + Sc)2 − Pr(m3 + Sc)−R
,

S7 = −(S1 + S2 + S3 + S4 + S5 + S6).

D1 =
m2A Pr

m2
2 − Pr m2 −N2

, D5 =
GmASc

n

m2
1 −m1 −N1

,

D6 =
−Am3P3

m2
3 −m3 −N1

, D8 =
−AP2Sc− GmASc

n

Sc2 − Sc−N1

,

D9 =
AP1m2 + GrD1

m2
2 −m2 −N1

, D9 = −(D5 + D6 + D7 + D8 + D9).

J1 =
−GrS7

m2
2 −m2 − (χ + M)

, J2 =
GrS1

4m2
3 − 2m3 − (χ + M)

,

J3 =
GrS2

4m2
2 − 2m2 − (χ + M)

, J4 =
GrS3

4Sc2 − 2Sc− (χ + M)
,

J5 =
−GrS4

(m2 + m3)2 − (m2 + m3)− (χ + M)
,

J6 =
GrS5

(m2 + Sc)2 − (m2 + Sc)− (χ + M)
,

J7 =
−GrS6

(m3 + Sc)2 − (m3 + Sc)− (χ + M)
,

J10 = −(J1 + J2 + J3 + J4 + J5 + J6 + J7).

G1 =
RAS7m2

m2
2 − Pr m2 −N2

,

G3 = −2 Pr AS2m2 + 2 Pr m2
2P1D7

4m2
2 − 2 Pr m2 −N2

,

G4 = −2 Pr AS3Sc + 2 Pr Sc2P2D8

4Sc2 − 2 Pr Sc−N2

,

G5 =
2 Pr m3P3D7m2 + 2 Pr P1D6m2m3 + Pr AS4(m2 + m3)

(m2 + m3)2 − Pr(m2 + m3)−N2

,
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G6 = −2 Pr m2P2D7Sc + 2 Pr P1D7m2Sc + Pr AS5(m2 + Sc)

(m2 + Sc)2 − Pr(m2 + Sc)−N2

,

G7 =
2 Pr m3P2D6Sc + 2 Pr P3D8m3Sc + Pr AS6(m3 + Sc)

(m3 + Sc)2 − Pr(m3 + Sc)−N2

,

G8 =
−2 Pr m3P3D10m5

(m3 + m5)2 − Pr(m3 + m5)−N2

,

G9 =
−2 Pr m3P3D9m4

(m3 + m4)2 − Pr(m3 + m4)−N2

,

G10 =
2 Pr m2P1D10m5

(m2 + m5)2 − Pr(m2 + m5)−N2

,

G11 =
2 Pr m2P1D9m4

(m2 + m4)2 − Pr(m2 + m4)−N2

,

G12 =
2 Pr ScP2D9m4

(m4 + Sc)2 − Pr(m4 + Sc)−N2

,

G14 =
−2 Pr m1P3D5m3

(m1 + m3)2 − Pr(m1 + m3)−N2

,

G15 =
2 Pr m2P1D5m1

(m1 + m2)2 − Pr(m1 + m2)−N2

,

G16 =
2 Pr ScP2D5m1

(m1 + Sc)2 − Pr(m1 + Sc)−N2

,

G20 = −(G1 + G2 + G3 + G4 + G5 + G6 + G7 + G8 + G9

+G10 + G11 + G12 + G13 + G14 + G15 + G16).

Z1 =
−GrG20

m2
4 −m4 −N1

, Z2 =
GrG1 − AJ1m2

m2
2 −m2 −N1

,

Z3 =
2AJ2m3 −GrG2

m2
3 −m3 −N1

, Z4 =
m3AJ10

m2
3 −m3 −N1

,

Z5 =
2AJ3m2 −GrG3

4m2
2 −m2 −N1

, Z6 =
2AJ4Sc−GrG4

4Sc2 − 2Sc−N1

,

Z7 = − AJ5(m2 + m3) + GrG5

(m2 + m3)2 − (m2 + m3)−N1

,
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Z8 =
AJ6(m2 + Sc) + GrG6

(m2 + Sc)2 − (m2 + Sc)−N1

,

Z9 = − AJ7(m3 + Sc) + GrG7

(m3 + Sc)2 − (m3 + Sc)−N1

,

Z10 =
GrG8

(m3 + m5)2 − (m3 + m5)−N1

,

Z11 =
GrG9

(m3 + m4)2 − (m3 + m4)−N1

,

Z12 =
−GrG10

(m2 + m5)2 − (m2 + m5)−N1,

Z13 =
−GrG11

(m2 + m4)2 − (m2 + m4)−N1

,

Z14 =
−GrG12

(m4 + Sc)2 − (m4 + Sc)−N1

,

Z15 =
−GrG13

(m5 + Sc)2 − (m5 + Sc)−N1

,

Z16 =
GrG14

(m1 + m3)2 − (m1 + m3)−N1

,

Z17 =
−GrG15

(m1 + m2)2 − (m1 + m2)−N1

,

Z18 =
−GrG16

(m1 + Sc)2 − (m1 + Sc)−N1

,

Z20 = −(Z1 + Z2 + Z3 + Z4 + Z5 + Z6 + Z7 + Z8 + Z9

+Z10 + Z11 + Z12 + Z13 + Z14 + Z15 + Z16 + Z17)
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Uticaj radiajacije i prenosa mase na nestacionarno
MHD slobodno konvekciono tečenje preko zagrejane

uspravne ploče u poroznoj sredini sa viskoznom
disipacijom

Posmatra se nestacionarno dvodimenziono hidromagnetsko laminarno slo-
bodno konvekciono tečenje u graničnom sloju nestǐsljivog Njutnovskog
elektroprovodnog i zračećeg fluida preko beskonačne zagrejane uspravne
ploče. Pri analizi prenosa mase i toplote uzima se u obzir viskozna disi-
pacija. Bezdimenzione jednačine problema su rešene analitički korǐsćenjem
dvočlanih harmonijskih i neharmonijskih funkcija. Numeričko dobijanje
rezultata je izvedeno, te su grafički prikazani rezultati za brzinu, tem-
peraturu i profile koncentracije unutar graničnog sloja kao kao i tab-
ulirani rezultati za koeficijent “skin-trenja”, Nuseltov i Šervudov broj.
Primećeno je da sa porastom parametra zračenja brzina i temperatura
u graničnom sloju opadaju, dok sa porastom termičkog i mešavinskog
Grashofovog broja brzina raste.
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