94 research outputs found

    The Habitats and Biodiversity of Watamu Marine National Park: Evaluating Our Knowledge of One of East Africa's Oldest Marine Protected Areas

    Get PDF
    Watamu Marine National Park (WMNP) is one of the oldest no-take Marine Protected Areas (MPAs) in the world. Since its establishment in 1968, it has been the subject of a number of scientific studies as well as suffering from a range of modern threats to coastal marine habitats. The current state and conservation value of WMNP is documented in terms of habitat, biodiversity, and available scientific literature. There were 101 published references relating to WMNP found, which mostly focus on coral reef ecology, with less attention to other topics, such as biodiversity, socio-economics, or the ecology of non-coral reef habitats. The habitat map produced of WMNP is the first to show this level of detail and the only habitat map of a Kenyan MPA. Nine habitat categories were mapped; revealing that the most dominant habitat type is seagrass and the least is coral reef. Species lists were collected for fish, echinoderms, molluscs, crustaceans, corals, and seagrass, and species abundances were used to estimate total species richness, species diversity and sampling completeness. There were 18 species across all groups that fall into a category of conservation concern (other than Least Concern or Not Evaluated) on the IUCN Red List and 8 species found which are currently undescribed. The findings of this paper emphasise the importance of non-coral habitats in the WMNP, such as seagrass beds, and the need for more research into the ecology and conservation importance of these habitats. The information provided in this paper provides a comprehensive overview to any scientist or conservationist wanting to carry out further work in WMNP

    Isoforms of U1-70k control subunit dynamics in the human spliceosomal U1 snRNP

    Get PDF
    Most human protein-encoding genes contain multiple exons that are spliced together, frequently in alternative arrangements, by the spliceosome. It is established that U1 snRNP is an essential component of the spliceosome, in human consisting of RNA and ten proteins, several of which are post- translationally modified and exist as multiple isoforms. Unresolved and challenging to investigate are the effects of these post translational modifications on the dynamics, interactions and stability of the particle. Using mass spectrometry we investigate the composition and dynamics of the native human U1 snRNP and compare native and recombinant complexes to isolate the effects of various subunits and isoforms on the overall stability. Our data reveal differential incorporation of four protein isoforms and dynamic interactions of subunits U1-A, U1-C and Sm-B/B’. Results also show that unstructured post- ranslationally modified C-terminal tails are responsible for the dynamics of Sm-B/B’ and U1-C and that their interactions with the Sm core are controlled by binding to different U1-70k isoforms and their phosphorylation status in vivo. These results therefore provide the important functional link between proteomics and structure as well as insight into the dynamic quaternary structure of the native U1 snRNP important for its function.This work was funded by: BBSRC (OVM), BBSRC and EPSRC (HH and NM), EU Prospects (HH), European Science Foundation (NM), the Royal Society (CVR), and fellowship from JSPS and HFSP (YM and DAPK respectively)

    Approaches to link RNA secondary structures with splicing regulation

    Full text link
    In higher eukaryotes, alternative splicing is usually regulated by protein factors, which bind to the pre-mRNA and affect the recognition of splicing signals. There is recent evidence that the secondary structure of the pre-mRNA may also play an important role in this process, either by facilitating or by hindering the interaction with factors and small nuclear ribonucleoproteins (snRNPs) that regulate splicing. Moreover, the secondary structure could play a fundamental role in the splicing of yeast species, which lack many of the regulatory splicing factors present in metazoans. This review describes the steps in the analysis of the secondary structure of the pre-mRNA and its possible relation to splicing. As a working example, we use the case of yeast and the problem of the recognition of the 3-prime splice site.Comment: 21 pages, 7 figure

    Novel conserved domains in proteins with predicted roles in eukaryotic cell-cycle regulation, decapping and RNA stability

    Get PDF
    BACKGROUND: The emergence of eukaryotes was characterized by the expansion and diversification of several ancient RNA-binding domains and the apparent de novo innovation of new RNA-binding domains. The identification of these RNA-binding domains may throw light on the emergence of eukaryote-specific systems of RNA metabolism. RESULTS: Using sensitive sequence profile searches, homology-based fold recognition and sequence-structure superpositions, we identified novel, divergent versions of the Sm domain in the Scd6p family of proteins. This family of Sm-related domains shares certain features of conventional Sm domains, which are required for binding RNA, in addition to possessing some unique conserved features. We also show that these proteins contain a second previously uncharacterized C-terminal domain, termed the FDF domain (after a conserved sequence motif in this domain). The FDF domain is also found in the fungal Dcp3p-like and the animal FLJ22128-like proteins, where it fused to a C-terminal domain of the YjeF-N domain family. In addition to the FDF domains, the FLJ22128-like proteins contain yet another divergent version of the Sm domain at their extreme N-terminus. We show that the YjeF-N domains represent a novel version of the Rossmann fold that has acquired a set of catalytic residues and structural features that distinguish them from the conventional dehydrogenases. CONCLUSIONS: Several lines of contextual information suggest that the Scd6p family and the Dcp3p-like proteins are conserved components of the eukaryotic RNA metabolism system. We propose that the novel domains reported here, namely the divergent versions of the Sm domain and the FDF domain may mediate specific RNA-protein and protein-protein interactions in cytoplasmic ribonucleoprotein complexes. More specifically, the protein complexes containing Sm-like domains of the Scd6p family are predicted to regulate the stability of mRNA encoding proteins involved in cell cycle progression and vesicular assembly. The Dcp3p and FLJ22128 proteins may localize to the cytoplasmic processing bodies and possibly catalyze a specific processing step in the decapping pathway. The explosive diversification of Sm domains appears to have played a role in the emergence of several uniquely eukaryotic ribonucleoprotein complexes, including those involved in decapping and mRNA stability

    Deciphering the universe of RNA structures and trans RNA-RNA interactions of transcriptomes in vivo: from experimental protocols to computational analyses

    Get PDF
    The last few years have seen an explosion of experimental and computational methods for investigating RNA structures of entire transcriptomes in vivo. Very recent experimental protocols now also allow trans RNA–RNA interactions to be probed in a transcriptome-wide manner. All of the experimental strategies require comprehensive computational pipelines for analysing the raw data and converting it back into actual RNA structure features or trans RNA–RNA interactions. The overall performance of these methods thus strongly depends on the experimental and the computational protocols employed. In order to get the best out of both worlds, both aspects need to be optimised simultaneously. This review introduced the methods and proposes ideas how they could be further improved

    Protein complexes are under evolutionary selection to assemble via ordered pathways

    Get PDF
    Is the order in which proteins assemble into complexes important for biological function? Here, we seek to address this by searching for evidence of evolutionary selection for ordered protein complex assembly. First, we experimentally characterize the assembly pathways of several heteromeric complexes and show that they can be simply predicted from their three-dimensional structures. Then, by mapping gene fusion events identified from fully sequenced genomes onto protein complex assembly pathways, we demonstrate evolutionary selection for conservation of assembly order. Furthermore, using structural and high-throughput interaction data, we show that fusion tends to optimize assembly by simplifying protein complex topologies. Finally, we observe protein structural constraints on the gene order of fusion that impact the potential for fusion to affect assembly. Together, these results reveal the intimate relationships among protein assembly, quaternary structure, and evolution and demonstrate on a genome-wide scale the biological importance of ordered assembly pathways

    Therapeutic application of T regulatory cells in composite tissue allotransplantation

    Full text link
    corecore