1,071 research outputs found

    Local magnetic moments and electronic transport in closed loop quantum dot systems: a case of quadruple quantum dot ring at and away from equilibrium

    Full text link
    We apply the non-equilibrium functional renormalization group approach treating flow of the electronic self-energies, to describe local magnetic moments formation and electronic transport in a quadruple quantum dot (QQD) ring, coupled to leads, with moderate Coulomb interaction on the quantum dots. We find that at zero temperature depending on parameters of the QQD system the regimes with zero, one, or two almost local magnetic moments in the ring can be realized, and the results of the considered approach in equilibrium agree qualitatively with those of more sophisticated fRG approach treating also flow of the vertices. It is shown that the almost formed local magnetic moments, which exist in the equilibrium, remain stable in a wide range of bias voltages near equilibrium. The destruction of the local magnetic moments with increasing bias voltage is realized in one or two stages, depending on the parameters of the system; for two-stage process the intermediate phase possesses fractional magnetic moment. We present zero-temperature results for current-voltage dependences and differential conductances of the system, which exhibit sharp features at the transition points between different magnetic states. The occurrence of interaction induced negative differential conductance phenomenon is demonstrated and discussed. For one local moment in the ring and finite hopping between the opposite quantum dots, connected to the leads, we find suppression of the conductance for one of the spin projections in infinitesimally small magnetic field, which occurs due to destructive interference of different electron propagation paths and can be used in spintronic devices.Comment: 19 pages, 19 figure

    Functional renormalization group study of parallel double quantum dots: Effects of asymmetric dot-lead couplings

    Full text link
    We explore the effects of asymmetry of hopping parameters between double parallel quantum dots and the leads on the conductance and a possibility of local magnetic moment formation in this system using functional renormalization group approach with the counterterm. We demonstrate a possibility of a quantum phase transition to a local moment regime (so called singular Fermi liquid (SFL) state) for various types of hopping asymmetries and discuss respective gate voltage dependences of the conductance. It is shown, that depending on the type of the asymmetry, the system can demonstrate either a first order quantum phase transition to SFL state, accompanied by a discontinuous change of the conductance, similarly to the symmetric case, or the second order quantum phase transition, in which the conductance is continuous and exhibits Fano-type asymmetric resonance near the transition point. A semi-analytical explanation of these different types of conductance behavior is presented.Comment: 11 pages, 9 figure

    On collective Rabi splitting in nanolasers and nano-LEDs

    Full text link
    We analytically calculate the optical emission spectrum of nanolasers and nano-LEDs based on a model of many incoherently pumped two-level emitters in a cavity. At low pump rates we find two peaks in the spectrum for large coupling strengths and numbers of emitters. We interpret the double-peaked spectrum as a signature of collective Rabi splitting, and discuss the difference between the splitting of the spectrum and the existence of two eigenmodes. We show that an LED will never exhibit a split spectrum, even though it can have distinct eigenmodes. For systems where the splitting is possible we show that the two peaks merge into a single one when the pump rate is increased. Finally, we compute the linewidth of the systems, and discuss the influence of inter-emitter correlations on the lineshape

    Photoemission from metal nanoparticles

    Get PDF
    A.Brodsky and Yu.Gurevitch approach is discussed and generalized for photoemission from metal nano-particles taking into account the excitation of localized plasmon resonance (LPR) and changes of electromagnetic field (EMF) and conduction electron mass in the metal - environment interface. New result is the increase of photo-emission current several time respectively to the case of continues metal film due to increase of intensity of EMF near the surface of nanoparticles and also due to surface phenomena mentioned above. Results can be applied for development new photodetectors, photo energy converters (solar cells) and for more studies of photoemission from metal nanoparticles.Comment: Accepted for publication in Uspekhi Fizicheskikh Nauk, http://ufn.ru/en/articles/accepted/35575/, Citation: Protsenko I E, Uskov A V "Photoemission from metal nanoparticles" Phys. Usp., accepte

    Transition absorption as a mechanism of surface photoelectron emission from metals

    Get PDF
    Transition absorption of electromagnetic field energy by an electron passing through a boundary between two media with different dielectric permittivities is considered both classically and quantum mechanically. It is shown that transition absorption can make a substantial contribution to the process of electron photoemission from metals due to the surface photoelectric effect.Comment: 4 pages, 3 figure

    Spontaneous hot-electron light emission from electron-fed optical antennas

    Full text link
    Nanoscale electronics and photonics are among the most promising research areas providing functional nano-components for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that these two device-generating technologies can be interfaced to create an electronically-driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating conditions, we show that the antenna enters a highly nonlinear regime in which the energy of the emitted photons exceeds the quantum limit imposed by the applied bias. We propose a model based upon the spontaneous emission of hot electrons that correctly reproduces the experimental findings. The electron-fed optical antennas described here are critical devices for interfacing electrons and photons, enabling thus the development of optical transceivers for on-chip wireless broadcasting of information at the nanoscale
    corecore