6,668 research outputs found

    Generation of higher order nonclassical states via interaction of intense electromagnetic field with third order nonlinear medium

    Full text link
    Interaction of intense laser beam with an inversion symmetric third order nonlinear medium is modeled as a quartic anharmonic oscillator. A first order operator solution of the model Hamiltonian is used to study the possibilities of generation of higher order nonclassical states. It is found that the higher order squeezed and higher order antibunched states can be produced by this interaction. It is also shown that the higher order nonclassical states may appear separately, i.e. a higher order antibunched state is not essentially higher order squeezed state and vice versa.Comment: 7 pages, no figur

    Quasiprobability distributions in open quantum systems: spin-qubit systems

    Full text link
    Quasiprobability distributions (QDs) in open quantum systems are investigated for SU(2)SU(2), spin like systems, having relevance to quantum optics and information. In this work, effect of both quantum non-demolition (QND) and dissipative open quantum systems, on the evolution of a number of spin QDs are investigated. Specifically, compact analytic expressions for the WW, PP, QQ, and FF functions are obtained for some interesting single, two and three qubit states, undergoing general open system evolutions. Further, corresponding QDs are reported for an N qubit Dicke model and a spin-1 system. The existence of nonclassical characteristics are observed in all the systems investigated here. The study leads to a clear understanding of quantum to classical transition in a host of realistic physical scenarios. Variation of the amount of nonclassicality observed in the quantum systems, studied here,are also investigated using nonclassical volume.Comment: 23 pages 13 figure

    Quantum phase properties of photon added and subtracted displaced Fock states

    Full text link
    Quantum phase properties of photon added and subtracted displaced Fock states (and a set of quantum states which can be obtained as the limiting cases of these states) are investigated from a number of perspectives, and it is shown that the quantum phase properties are dependent on the quantum state engineering operations performed. Specifically, the analytic expressions for quantum phase distributions and angular QQ distribution as well as measures of quantum phase fluctuation and phase dispersion are obtained. The uniform phase distribution of the initial Fock states is observed to be transformed by the unitary operation (i.e., displacement operator) into non-Gaussian shape, except for the initial vacuum state. It is observed that the phase distribution is symmetric with respect to the phase of the displacement parameter and becomes progressively narrower as its amplitude increases. The non-unitary (photon addition/subtraction) operations make it even narrower in contrast to the Fock parameter, which leads to broadness. The photon subtraction is observed to be a more powerful quantum state engineering tool in comparison to the photon addition. Further, one of the quantum phase fluctuation parameters is found to reveal the existence of antibunching in both the engineered quantum states under consideration. Finally, the relevance of the engineered quantum states in the quantum phase estimation is also discussed, and photon added displaced Fock state is shown to be preferable for the task.Comment: Quantum phase properties of an engineered quantum state has been studied from various perspective

    Lower- and higher-order nonclassical properties of photon added and subtracted displaced Fock states

    Full text link
    Nonclassical properties of photon added and subtracted displaced Fock states have been studied using various witnesses of lower- and higher-order nonclassicality. Compact analytic expressions are obtained for the nonclassicality witnesses. Using those expressions, it is established that these states and the states that can be obtained as their limiting cases (except coherent states) are highly nonclassical as they show the existence of lower- and higher-order antibunching and sub-Poissonian photon statistics, in addition to the nonclassical features revealed through the Mandel QMQ_M parameter, zeros of Q function, Klyshko's criterion, and Agarwal-Tara criterion. Further, some comparison between the nonclassicality of photon added and subtracted displaced Fock states have been performed using witnesses of nonclassicality. This has established that between the two types of non-Gaussianity inducing operations (i.e., photon addition and subtraction) used here, photon addition influences the nonclassical properties more strongly. Further, optical designs for the generation of photon added and subtracted displaced Fock states from squeezed vacuum state have also been proposed.Comment: A comparative study of the nonclassicality present in photon added and subtracted displaced Fock states shows photon addition is generally preferable nonclassicality inducing operation, while subtraction also has advantage in some cases over additio

    Spatial-temporal evolution of the current filamentation instability

    Get PDF
    The spatial-temporal evolution of the purely transverse current filamentation instability is analyzed by deriving a single partial differential equation for the instability and obtaining the analytical solutions for the spatially and temporally growing current filament mode. When the beam front always encounters fresh plasma, our analysis shows that the instability grows spatially from the beam front to the back up to a certain critical beam length; then the instability acquires a purely temporal growth. This critical beam length increases linearly with time and in the non-relativistic regime it is proportional to the beam velocity. In the relativistic regime the critical length is inversely proportional to the cube of the beam Lorentz factor γ0b\gamma_{0b}. Thus, in the ultra-relativistic regime the instability immediately acquires a purely temporal growth all over the beam. The analytical results are in good agreement with multidimensional particle-in-cell simulations performed with OSIRIS. Relevance of current study to recent and future experiments on fireball beams is also addressed
    corecore