104 research outputs found

    Exploiting user contention to optimize proactive resource allocation in future networks

    Get PDF
    In order to provide ubiquitous communication, seamless connectivity is now required in all environments including highly mobile networks. By using vertical handover techniques it is possible to provide uninterrupted communication as connections are dynamically switched between wireless networks as users move around. However, in a highly mobile environment, traditional reactive approaches to handover are inadequate. Therefore, proactive handover techniques, in which mobile nodes attempt to determine the best time and place to handover to local networks, are actively being investigated in the context of next generation mobile networks. The Y-Comm Framework which looks at proactive handover techniques has de�fined two key parameters: Time Before Handover and the Network Dwell Time, for any given network topology. Using this approach, it is possible to enhance resource management in common networks using probabilistic mechanisms because it is now possible to express contention for resources in terms of: No Contention, Partial Contention and Full Contention. As network resources are shared between many users, resource management must be a key part of any communication system as it is needed to provide seamless communication and to ensure that applications and servers receive their required Quality-of-Service. In this thesis, the contention for channel resources being allocated to mobile nodes is analysed. The work presents a new methodology to support proactive resource allocation for emerging future networks such as Vehicular Ad-Hoc Networks (VANETs) by allowing us to calculate the probability of contention based on user demand of network resources. These results are veri�ed using simulation. In addition, this proactive approach is further enhanced by the use of a contention queue to detect contention between incoming requests and those waiting for service. This thesis also presents a new methodology to support proactive resource allocation for future networks such as Vehicular Ad-Hoc Networks. The proposed approach has been applied to a vehicular testbed and results are presented that show that this approach can improve overall network performance in mobile heterogeneous environments. The results show that the analysis of user contention does provide a proactive mechanism to improve the performance of resource allocation in mobile networks

    Exploring analytical models for proactive resource management in highly mobile environments

    Get PDF
    In order to provide ubiquitous communication, seamless connectivity is now required in all environments including highly mobile networks. By using vertical handover techniques it is possible to provide uninterrupted communication as connections are dynamically switched between wireless networks as users move around. However, in a highly mobile environment, traditional reactive approaches to handover are inadequate. Therefore, proactive handover techniques, in which mobile nodes attempt to determine the best time and place to handover to local networks, are actively being investigated in the context of next-generation mobile networks. Using this approach, it is possible to enhance channel allocation and resource management by using probabilistic mechanisms; because, it is possible to explicitly detect contention for resources. This paper presents a proactive approach for resource allocation in highly mobile networks and analyzed the user contention for common resources such as radio channels in highly mobile wireless networks. The proposed approach uses an analytical modelling approach to model the contention and results are obtained showing enhanced system performance. Based on these results an operational space has been explored and are shown to be useful for emerging future networks such as 5G by allowing base stations to calculate the probability of contention based on the demand for network resources. This study indicates that the proactive model enhances handover and resource allocation for highly mobile networks. This paper analyzed the effects of and alpha and beta, in effect, how these parameters affect the proactive resource allocation requests in the contention queue has been modelled for any given scenario from the conference paper "Exploring analytical models to maintain quality-of-service for resource management using a proactive approach in highly mobile environments"

    Building an Intelligent Transport Information Platform for Smart Cities

    Get PDF
    Intelligent Transportation management is a key requirement in the development of Smart Cities. This can be realised with a new technology known as Vehicular Ad hoc Networks or VANETs. VANETs allow us to integrate our transport and communication infrastructures through communication devices deployed along the roads called Roadside Units (RSUs). The RSUs talk to a device in your car called an Onboard Unit (OBU). OBUs can exchange information with RSUs as well as with each other, and because VANETs have been engineered to deliver information quickly and reliably, they can be used in a number of safety-critical areas such as collision avoidance, accident notification and disaster management. This project was about building and evaluating a prototype VANET network on the Middlesex University Hendon Campus and surrounding roads. The information from this VANET Testbed was stored and processed using a Cloud platform at Middlesex University, enabling visual and data analytics to be applied in order to provide an intelligent platform for transport management

    Assessment of the Efficacy of Some Carbonate Minerals as Energizers in Pack Carburisation of Mild Steel

    Get PDF
    The efficacy of some carbonate minerals (marble, limestone and dolomite) as energizers in pack-caburisation of mild steel has been compared with that of barium carbonate. Mild steel samples were pack-carburised for suitable lengths of time at 9000C in carburising compounds containing charcoal plus varying amounts (up to a maximum of 20%) of BaCo3 and/or either marble, limestone or dolomite as energizers. The resultant carburisation depths obtained with different compounds were compared by means of hardness measurements using a microhardness testing .machine. The results showed that BaC03 can almost be completely substituted with marble or limestone, and that a combination of BaC03 and marble was a more effective energizer than solely Baco3; whereas dolomite was the least effective energizer. The deepest and best3defined case was obtained with a combination of 15% marble and 5% BaC03

    Exploring intelligent service migration in vehicular networks

    Get PDF
    Mobile edge clouds have great potential to address the challenges in vehicular networks by transferring storage and computing functions to the cloud. This brings many advantages of the cloud closer to the mobile user, by installing small cloud infrastructures at the network edge. However, it is still a challenge to efficiently utilize heterogeneous communication and edge computing architectures. In this paper, we investigate the impact of live service migration within a Vehicular Ad-hoc Network environment by making use of the results collected from a real experimental test-bed. A new proactive service migration model which considers both the mobility of the user and the service migration time for different services is introduced. Results collected from a real experimental test-bed of connected vehicles show that there is a need to explore proactive service migration based on the mobility of users. This can result in better resource usage and better Quality of Service for the mobile user. Additionally, a study on the performance of the transport protocol and its impact in the context of live service migration for highly mobile environments is presented with results in terms of latency, bandwidth, and burst and their potential effect on the time it takes to migrate services

    Enabling seamless V2I communications towards developing cooperative automotive applications in VANET systems

    Get PDF
    Cooperative applications for VANET will require seamless communication between Vehicle to Infrastructure and Vehicle to Vehicle. IEEE 802.11p has been developed to facilitate this effort. However, in order to have seamless communication for these applications, it is necessary to look at handover as vehicles move between Road-side Units. Traditional models of handover used in normal mobile environments are unable to cope with the high velocity of the vehicle and the relatively small area of coverage with regard to vehicular environments. The YComm framework has yielded techniques to calculate the Time Before Vertical Handover and the Network Dwell Time for any given network topology. Furthermore, by knowing these two parameters, it is also possible to improve channel allocation and resource management in network infrastructure such as base-stations, relays, etc. In this article we explain our overall approach by describing the VANET Testbed and show that in Vehicular environments it is necessary to consider a new handover model which is based on a probabilistic rather than a fixed coverage approach. Finally, we show a new performance model for proactive handover which is then compared with traditional approaches

    Exploiting resource contention in highly mobile environments and its application to vehicular ad-hoc networks

    Get PDF
    As network resources are shared between many users, resource management must be a key part of any communication system as it is needed to provide seamless communication and to ensure that applications and servers receive their required Quality-of-Service. However, mobile environments also need to consider handover issues. Furthermore, in a highly mobile environment, traditional reactive approaches to handover are inadequate and thus proactive techniques have been investigated. Recent research in proactive handover techniques, defined two key parameters: Time Before Handover and Network Dwell Time for a mobile node in any given networking topology. Using this approach, it is possible to enhance resource management in common networks using probabilistic mechanisms because it is possible to express contention for resources in terms of: No Contention, Partial Contention and Full Contention. This proactive approach is further enhanced by the use of a contention queue to detect contention between incoming requests and those waiting for service. This paper therefore presents a new methodology to support proactive resource allocation for future networks such as Vehicular Ad-Hoc Networks. The proposed approach has been applied to a vehicular testbed and results are presented that show that this approach can improve overall network performance in mobile heterogeneous environments

    Exploring a new transport protocol for vehicular networks

    Get PDF
    The Future Internet will be very different from the current Internet. In particular, support for new networks such as vehicular networks, will be a key part of the new environment. Applications running on these networks will require low latency and high bandwidth, which must be provided in a highly mobile environment. The goal of this paper is to look at these issues as they have been addressed in the design and development of the Simple Lightweight Transport Protocol (SLTP) to support vehicular networking. The functions and workings of the protocol are examined in this paper as well as the ecosystem that is needed to provide low latency. A detailed set of preliminary results are presented and compared with a standard TCP implementation. SLTP was also ported to the Roadside Units of a Vehicle Ad-Hoc Network and results are presented for moving data to and from the Roadside Units. This work highlights the need for the Future Internet to place more resources at the edge of the core network to provide support for low latency in vehicular environments

    High Critical Current Coated Conductors

    Full text link
    One of the important critical needs that came out of the DOE’s coated conductor workshop was to develop a high throughput and economic deposition process for YBCO. Metal-organic chemical vapor deposition (MOCVD) technique, the most critical steps in high technical micro fabrications, has been widely employed in semiconductor industry for various thin film growth. SuperPower has demonstrated that (Y,Gd)BCO films can be deposited rapid with world record performance. In addition to high critical current density with increased film thickness, flux pinning properties of REBCO films needs to be improved to meet the DOE requirements for various electric-power equipments. We have shown that doping with Zr can result in BZO nanocolumns, but at substantially reduced deposition rate. The primary purpose of this subtask is to develop high current density MOCVD-REBCO coated conductors based on the ion-beam assisted (IBAD)-MgO deposition process. Another purpose of this subtask is to investigate HTS conductor design optimization (maximize Je) with emphasis on stability and protection issues, and ac loss for REBCO coated conductors

    Building a prototype VANET testbed to explore communication dynamics in highly mobile environments

    Get PDF
    Applications for VANETs will require seamless communication between vehicle-to-infrastructure and vehicle-to-vehicle. However, this is challenging because this is a highly mobile environment. Therefore, traditional handover techniques are inadequate due to the high velocity of the vehicle and the small coverage radius of Road-side Units. Hence in order to have seamless communication for these applications, a proactive approach needs to be carefully investigated. This requires measurements from a real testbed in order to enhance our understanding of the communication dynamics. This paper is about building and evaluating a prototype VANET network on the Middlesex University Hendon Campus, London to explore these issues. The testbed is being used to investigate better propagation models, road-critical safety applications as well as algorithms for traffic management. In addition, the Network Dwell Time of vehicles travelling in the coverage of the RSUs is measured to explore proactive handover and resource allocation mechanisms
    • …
    corecore