Enabling seamless V2I communications towards developing cooperative automotive applications in VANET systems

Abstract

Cooperative applications for VANET will require seamless communication between Vehicle to Infrastructure and Vehicle to Vehicle. IEEE 802.11p has been developed to facilitate this effort. However, in order to have seamless communication for these applications, it is necessary to look at handover as vehicles move between Road-side Units. Traditional models of handover used in normal mobile environments are unable to cope with the high velocity of the vehicle and the relatively small area of coverage with regard to vehicular environments. The YComm framework has yielded techniques to calculate the Time Before Vertical Handover and the Network Dwell Time for any given network topology. Furthermore, by knowing these two parameters, it is also possible to improve channel allocation and resource management in network infrastructure such as base-stations, relays, etc. In this article we explain our overall approach by describing the VANET Testbed and show that in Vehicular environments it is necessary to consider a new handover model which is based on a probabilistic rather than a fixed coverage approach. Finally, we show a new performance model for proactive handover which is then compared with traditional approaches

    Similar works