155 research outputs found
Surface Tension of Seawater
New measurements and a reference correlation for the surface tension of seawater at atmospheric pressure are presented in this paper. Surface tension of seawater was measured across a salinity range of 20 ⩽ S ⩽ 131 g/kg and a temperature range of 1 ⩽ t ⩽ 92 °C at atmospheric pressure using the Wilhelmy plate method. The uncertainty within measurements varied from 0.18 to 0.37 mN/m with the average uncertainty being 0.22 mN/m. The experimental procedures were validated with tests conducted on ACS reagent grade water and aqueous sodium chloride solutions. Literature data and present measurements were evaluated and a reference correlation was developed expressing surface tension of seawater as a function of temperature and salinity. The average absolute percentage deviation between measurements and the correlation was 0.19% while the maximum deviation was 0.60%.Center for Clean Water and Clean Energy at MIT and KFUPM (Project R13-CW-10
Annealing-induced property improvements in 2-14-1 powders produced by inert gas atomization
Recommended from our members
Texture determinations in rare-earth-based permanent magnets
Quantifying the relationship between crystallographic texture and magnetic properties is highly desirable for the engineering high (BH){sub max} magnets. Existing techniques for the evaluation of texture in permanent magnets often rely upon magnetic remanence measurements. However, such determinations are strictly applicable only to assemblies of non-interacting particles, which nullifies the use of the Stoner-Wohlfarth criteria in texture determinations of ``exchange-spring`` magnets. New techniques in the determination of texture of bulk permanent magnets are being developed to overcome these inherent experimental difficulties. Crystallographic alignment studied by transmission synchrotron x-ray diffraction as a function of position within the sample reveals insights into the development of texture with deformation level in thermomechanically-processed magnets. Information concerning texture may also be obtained by a different method based on paramagnetic susceptibility measurements. Such measurements also provide Curie temperature data, which is sensitive to chemical changes that may have occurred in the magnetic phase during processing
Social Transmission and the Spread of Modern Contraception in Rural Ethiopia
Socio-economic development has proven to be insufficient to explain the time and pace of the human demographic transition. Shifts to low fertility norms have thus been thought to result from social diffusion, yet to date, micro-level studies are limited and are often unable to disentangle the effect of social transmission from that of extrinsic factors. We used data which included the first ever use of modern contraception among a population of over 900 women in four villages in rural Ethiopia, where contraceptive prevalence is still low (<20%). We investigated whether the time of adoption of modern contraception is predicted by (i) the proportion of ever-users/non ever-users within both women and their husbands' friendships networks and (ii) the geographic distance to contraceptive ever-users. Using a model comparison approach, we found that individual socio-demographic characteristics (e.g. parity, education) and a religious norm are the most likely explanatory factors of temporal and spatial patterns of contraceptive uptake, while the role of person-to-person contact through either friendship or spatial networks remains marginal. Our study has broad implications for understanding the processes that initiate transitions to low fertility and the uptake of birth control technologies in the developing world
The Evolution of Religion: How Cognitive By-Products, Adaptive Learning Heuristics, Ritual Displays, and Group Competition Generate Deep Commitments to Prosocial Religio
Understanding religion requires explaining why supernatural beliefs, devotions, and rituals are both universal and variable across cultures, and why religion is so often associated with both large-scale cooperation and enduring group conflict. Emerging lines of research suggest that these oppositions result from the convergence of three processes. First, the interaction of certain reliably developing cognitive processes, such as our ability to infer the presence of intentional agents, favors—as an evolutionary by-product—the spread of certain kinds of counterintuitive concepts. Second, participation in rituals and devotions involving costly displays exploits various aspects of our evolved psychology to deepen people's commitment to both supernatural agents and religious communities. Third, competition among societies and organizations with different faith-based beliefs and practices has increasingly connected religion with both within-group prosociality and between-group enmity. This connection has strengthened dramatically in recent millennia, as part of the evolution of complex societies, and is important to understanding cooperation and conflict in today's world
Recommended from our members
Magnetization reversal in melt-quenched NdFeB
Melt-quenched NdFeB is an important modern permanent magnet material. However there still remains doubt as to the magnetization reversal mechanism which controls coercivity in material prepared by this processing route. To investigate this problem a new technique based on measurements of reversible magnetization along recoil curves has been used. The technique identifies the presence of free domain walls during magnetic reversal. For this study samples of isotropic (MQI), hot pressed (MQII) and die upset (MQIII) melt-quenched NdFeB were examined. The results indicate that in MQI free domain walls are not present during reversal and the reversal mechanism is most likely incoherent rotation of some form. Free domain walls are also not present during reversal in the majority of grains of MQII, even though initial magnetization measurements indicate that the grain size is large enough to support them. In MQIII free domain walls are present during reversal. These results are attributed to the reduced domain wall nucleation field in MQIII compared with MQII and the increased dipolar interactions in MQIII
Recommended from our members
Microstructural characterization of high energy product Nd-Fe-B rapidly solidified ribbons
The bonded Nd-Fe-B market has experienced the fastest growth of any permanent magnet market. Rapidly solidified Nd-Fe-B forms the basis for this bonded magnet industry. Rapid solidification is carried out by melt spinning, producing a highly stable and magnetically hard microstructure. This study focuses on a microstructural analysis of this melt spun ribbon using transmission and scanning electron microscopy (TEM and SEM), atom probe field ion microscopy (APFIM) and Auger electron spectroscopy (AES). The ribbons showed a uniform grain size and shape distribution through the thickness of the melt spun ribbon. Grain sizes ranged from 20 to 40 nm. AES showed neodymium enrichment on a fracture surface and corresponding iron and boron depletion suggesting that the eutectic 70Nd-30Fe phase is present with a thickness of approximately 1 nm. Atom probe composition analysis of grain interiors gave results very close to the nominal composition and some preliminary evidence of a grain boundary phase
Longan-inspired chitosan-pectin core-shell hydrogel beads for oral delivery of biodrugs to enhance osteoporosis therapy
Funding Information: This work was supported by Ton Duc Thang University. This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2023R1A2C1005904). E.-S.J. is incredibly grateful for the research grant from the Korean Ministry of Education, Science & Technology (2016R1D1A3B0201175615), the Korean Health Technology R&D Project (HP23C0260) through the Korean Health Industry Development Institute (KHIDI) funded by the Ministry of Health and Welfare, and the Innovative Human Resource Development for Local Intellectualization Support Program (IITP-2025-RS-2020-II201612) through the Institute of Information & Communications Technology Planning & Evaluation (IITP) funded by the Korean government (MSIT), Republic of Korea. The Basic Science Research Program supported this research through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2022R1I1A1A01068693). Publisher Copyright: © 2025 The AuthorsOsteoporosis, a common disorder, is characterized by a systemic reduction in bone mass and structural integrity, resulting in brittle bones. Reducing bone loss and enhancing bone density through oral administration of biopharmaceuticals provides significant advantages, including convenience and non-invasiveness for patients. However, challenges such as poor absorption and enzymatic degradation necessitate the development of innovative drug delivery systems. This research introduces a core-shell hydrogel system inspired by the natural architecture of Longan fruit, constructed from pectin and chitosan biopolymers, designed to create biocapsules and sustain the release of biodrugs. In this system, salmon calcitonin (sCT) was encapsulated within mesoporous silica nanoparticles (MSNs) and incorporated into the core of the beads. The synthesis of the core-shell hydrogel beads was carefully regulated by adjusting the immersion time and concentration of the crosslinker. The hydrogel beads demonstrated durability, with the pectin shell effectively preventing rapid degradation in the stomach, while the chitosan layer enhanced adhesion to the intestinal walls, safeguarded sCT, and enabled sustained drug release over an extended period of up to 30 h. Furthermore, biocompatibility tests indicated minimal cytotoxicity and hemolysis. Cellular uptake assays demonstrated that the core-shell beads effectively encapsulated sCT and ensured its prolonged release to CT-26 cells. This study presents a promising platform for oral sCT delivery, offering enhanced efficacy, patient compliance, and a potential replacement for injection-based therapies.publishersversionpublishe
Mutually Positive Regulatory Feedback Loop between Interferons and Estrogen Receptor-α in Mice: Implications for Sex Bias in Autoimmunity
gene) and stimulates expression of target genes. female mice had relatively higher steady-state levels of mRNAs encoded by the IFN and ERα-responsive genes as compared to the age-matched males.Our observations identify a novel mutually positive regulatory feedback loop between IFNs and ERα in immune cells in mice and support the idea that activation of this regulatory loop contributes to sex bias in SLE
Social Closure and the Evolution of Cooperation via Indirect Reciprocity
Direct and indirect reciprocity are good candidates to explain the fundamental problem of evolution of cooperation. We explore the conditions under which different types of reciprocity gain dominance and their performances in sustaining cooperation in the PD played on simple networks. We confirm that direct reciprocity gains dominance over indirect reciprocity strategies also in larger populations, as long as it has no memory constraints. In the absence of direct reciprocity, or when its memory is flawed, different forms of indirect reciprocity strategies are able to dominate and to support cooperation. We show that indirect reciprocity relying on social capital inherent in closed triads is the best competitor among them, outperforming indirect reciprocity that uses information from any source. Results hold in a wide range of conditions with different evolutionary update rules, extent of evolutionary pressure, initial conditions, population size, and density
- …
