1,156 research outputs found

    Dephasing and leakage dynamics of noisy Majorana-based qubits: Topological versus Andreev

    Get PDF
    Topological quantum computation encodes quantum information nonlocally by nucleating non-Abelian anyons separated by distances L, typically spanning the qubit device size. This nonlocality renders topological qubits exponentially immune to dephasing from all sources of classical noise with operator support local on the scale of L. We perform detailed analytical and numerical analyses of a time-domain Ramsey-type protocol for noisy Majorana-based qubits that is designed to validate this coveted topological protection in near-term devices such as the so-called “tetron” design. By assessing dependence of dephasing times on tunable parameters, e.g., magnetic field, our proposed protocol can clearly distinguish a bona fide Majorana qubit from one constructed from semilocal Andreev bound states, which can otherwise closely mimic the true topological scenario in local probes. In addition, we analyze leakage of the qubit out of its low-energy manifold due to classical-noise-induced generation of quasiparticle excitations; leakage limits the qubit lifetime when the bulk gap collapses, and hence our protocol further reveals the onset of a topological phase transition. This experiment requires measurement of two nearby Majorana modes for both initialization and readout—achievable, for example, by tunnel coupling to a nearby quantum dot—but no further Majorana manipulations, and thus constitutes an enticing prebraiding experiment. Along the way, we address conceptual subtleties encountered when discussing dephasing and leakage in the context of Majorana qubits

    On the role of electron-phonon interaction in the resistance anisotropy of two-dimensional electrons in GaAs heterostructures

    Full text link
    A contribution of the electron-phonon interaction into the energy of a unidirectional charge ordered state (stripe phase) of two-dimensional electrons in GaAs heterostructures is analyzed. The dependence of the energy on the direction of the electron density modulation is calculated. It is shown that in electrons layers situated close to the (001) surface the interference between the piezoelectric and the deformation potential interaction causes a preferential orientation of the stripes along the [110] axis.Comment: 9 pages, accepted for publication in Journal of Physics: Condensed Matte

    General Localization Lengths for Two Interacting Particles in a Disordered Chain

    Full text link
    The propagation of an interacting particle pair in a disordered chain is characterized by a set of localization lengths which we define. The localization lengths are computed by a new decimation algorithm and provide a more comprehensive picture of the two-particle propagation. We find that the interaction delocalizes predominantly the center-of-mass motion of the pair and use our approach to propose a consistent interpretation of the discrepancies between previous numerical results.Comment: 4 pages, 2 epsi figure

    Vibrational absorption sidebands in the Coulomb blockade regime of single-molecule transistors

    Full text link
    Current-driven vibrational non-equilibrium induces vibrational sidebands in single-molecule transistors which arise from tunneling processes accompanied by absorption of vibrational quanta. Unlike conventional sidebands, these absorption sidebands occur in a regime where the current is nominally Coulomb blockaded. Here, we develop a detailed and analytical theory of absorption sidebands, including current-voltage characteristics as well as shot noise. We discuss the relation of our predictions to recent experiments.Comment: 7 pages, 6 figures; revised discussion of relation to experimen

    Coulomb drag in high Landau levels

    Full text link
    Recent experiments on Coulomb drag in the quantum Hall regime have yielded a number of surprises. The most striking observations are that the Coulomb drag can become negative in high Landau levels and that its temperature dependence is non-monotonous. We develop a systematic diagrammatic theory of Coulomb drag in strong magnetic fields explaining these puzzling experiments. The theory is applicable both in the diffusive and the ballistic regimes; we focus on the experimentally relevant ballistic regime (interlayer distance aa smaller than the cyclotron radius RcR_c). It is shown that the drag at strong magnetic fields is an interplay of two contributions arising from different sources of particle-hole asymmetry, namely the curvature of the zero-field electron dispersion and the particle-hole asymmetry associated with Landau quantization. The former contribution is positive and governs the high-temperature increase in the drag resistivity. On the other hand, the latter one, which is dominant at low TT, has an oscillatory sign (depending on the difference in filling factors of the two layers) and gives rise to a sharp peak in the temperature dependence at TT of the order of the Landau level width.Comment: 26 pages, 13 figure

    Level Statistics and Localization for Two Interacting Particles in a Random Potential

    Full text link
    We consider two particles with a local interaction UU in a random potential at a scale L1L_1 (the one particle localization length). A simplified description is provided by a Gaussian matrix ensemble with a preferential basis. We define the symmetry breaking parameter μU2\mu \propto U^{-2} associated to the statistical invariance under change of basis. We show that the Wigner-Dyson rigidity of the energy levels is maintained up to an energy EμE_{\mu}. We find that Eμ1/μE_{\mu} \propto 1/\sqrt{\mu} when Γ\Gamma (the inverse lifetime of the states of the preferential basis) is smaller than Δ2\Delta_2 (the level spacing), and Eμ1/μE_{\mu} \propto 1/\mu when Γ>Δ2\Gamma > \Delta_2. This implies that the two-particle localization length L2L_2 first increases as U|U| before eventually behaving as U2U^2.Comment: 4 pages REVTEX, 4 Figures EPS, UUENCODE

    Scattering theory of current-induced forces in mesoscopic systems

    Full text link
    We develop a scattering theory of current-induced forces exerted by the conduction electrons of a general mesoscopic conductor on slow "mechanical" degrees of freedom. Our theory describes the current-induced forces both in and out of equilibrium in terms of the scattering matrix of the phase-coherent conductor. Under general nonequilibrium conditions, the resulting mechanical Langevin dynamics is subject to both non-conservative and velocity-dependent Lorentz-like forces, in addition to (possibly negative) friction. We illustrate our results with a two-mode model inspired by hydrogen molecules in a break junction which exhibits limit-cycle dynamics of the mechanical modes.Comment: 4+ pages, 1 figure; v2: minor modification

    Theory of the Franck-Condon blockade regime

    Full text link
    Strong coupling of electronic and vibrational degrees of freedom entails a low-bias suppression of the current through single-molecule devices, termed Franck-Condon blockade. In the limit of slow vibrational relaxation, transport in the Franck-Condon-blockade regime proceeds via avalanches of large numbers of electrons, which are interrupted by long waiting times without electron transfer. The avalanches consist of smaller avalanches, leading to a self-similar hierarchy which terminates once the number of transferred electrons per avalanche becomes of the order of unity. Experimental signatures of self-similar avalanche transport are strongly enhanced current (shot) noise, as expressed by giant Fano factors, and a power-law noise spectrum. We develop a theory of the Franck-Condon-blockade regime with particular emphasis on effects of electron cotunneling through highly excited vibrational states. As opposed to the exponential suppression of sequential tunneling rates for low-lying vibrational states, cotunneling rates suffer only a power-law suppression. This leads to a regime where cotunneling dominates the current for any gate voltage. Including cotunneling within a rate-equation approach to transport, we find that both the Franck-Condon blockade and self-similar avalanche transport remain intact in this regime. We predict that cotunneling leads to absorption-induced vibrational sidebands in the Coulomb-blockaded regime as well as intrinsic telegraph noise near the charge degeneracy point.Comment: 20 pages, 10 figures; minor changes, version published in Phys. Rev.

    Interaction-Induced Magnetization of the Two-Dimensional Electron Gas

    Full text link
    We consider the contribution of electron-electron interactions to the orbital magnetization of a two-dimensional electron gas, focusing on the ballistic limit in the regime of negligible Landau-level spacing. This regime can be described by combining diagrammatic perturbation theory with semiclassical techniques. At sufficiently low temperatures, the interaction-induced magnetization overwhelms the Landau and Pauli contributions. Curiously, the interaction-induced magnetization is third-order in the (renormalized) Coulomb interaction. We give a simple interpretation of this effect in terms of classical paths using a renormalization argument: a polygon must have at least three sides in order to enclose area. To leading order in the renormalized interaction, the renormalization argument gives exactly the same result as the full treatment.Comment: 11 pages including 4 ps figures; uses revtex and epsf.st

    Probability distribution of Majorana end-state energies in disordered wires

    Full text link
    One-dimensional topological superconductors harbor Majorana bound states at their ends. For superconducting wires of finite length L, these Majorana states combine into fermionic excitations with an energy ϵ0\epsilon_0 that is exponentially small in L. Weak disorder leaves the energy splitting exponentially small, but affects its typical value and causes large sample-to-sample fluctuations. We show that the probability distribution of ϵ0\epsilon_0 is log normal in the limit of large L, whereas the distribution of the lowest-lying bulk energy level ϵ1\epsilon_1 has an algebraic tail at small ϵ1\epsilon_1. Our findings have implications for the speed at which a topological quantum computer can be operated.Comment: 4 pages, 2 figure
    corecore