59 research outputs found

    Optical absorption in small BN and C nanotubes

    Get PDF
    We present a theoretical study of the optical absorption spectrum of small boron-nitride and carbon nanotubes using time-dependent density-functional theory and the random phase approximation. Both for C and BN tubes, the absorption of light polarized perpendicular to the tube-axis is strongly suppressed due to local field effects. Since BN-tubes are wide band-gap insulators, they only absorb in the ultra-violet energy regime, independently of chirality and diameter. In comparison with the spectra of the single C and BN-sheets, the tubes display additional fine-structure which stems from the (quasi-) one-dimensionality of the tubes and sensitively depends on the chirality and tube diameter. This fine structure can provide additional information for the assignment of tube indices in high resolution optical absorption spectroscopy.Comment: 5 pages, 3 figure

    Ab initio GW many-body effects in graphene

    Full text link
    We present an {\it ab initio} many-body GW calculation of the self-energy, the quasiparticle band plot and the spectral functions in free-standing undoped graphene. With respect to other approaches, we numerically take into account the full ionic and electronic structure of real graphene and we introduce electron-electron interaction and correlation effects from first principles. Both non-hermitian and also dynamical components of the self-energy are fully taken into account. With respect to DFT-LDA, the Fermi velocity is substantially renormalized and raised by a 17%, in better agreement with magnetotransport experiments. Furthermore, close to the Dirac point the linear dispersion is modified by the presence of a kink, as observed in ARPES experiments. Our calculations show that the kink is due to low-energy π→π∗\pi \to \pi^* single-particle excitations and to the π\pi plasmon. Finally, the GW self-energy does not open the band gap.Comment: 5 pages, 4 figures, 1 tabl

    Transforming nonlocality into frequency dependence: a shortcut to spectroscopy

    Full text link
    Measurable spectra are theoretically very often derived from complicated many-body Green's functions. In this way, one calculates much more information than actually needed. Here we present an in principle exact approach to construct effective potentials and kernels for the direct calculation of electronic spectra. In particular, the potential that yields the spectral function needed to describe photoemission turns out to be dynamical but {\it local} and {\it real}. As example we illustrate this ``photoemission potential'' for sodium and aluminium, modelled as homogeneous electron gas, and discuss in particular its frequency dependence stemming from the nonlocality of the corresponding self-energy. We also show that our approach leads to a very short derivation of a kernel that is known to well describe absorption and energy-loss spectra of a wide range of materials

    Plasmon channels in the electronic relaxation of diamond under high-order harmonics femtosecond irradiation

    Get PDF
    We used high order harmonics of a femtosecond titanium-doped sapphire system (pulse duration 25 fs) to realise Ultraviolet Photoelectron Spectroscopy (UPS) measurements on diamond. The UPS spectra were measured for harmonics in the range 13 to 27. We also made ab initio calculations of the electronic lifetime of conduction electrons in the energy range produced in the UPS experiment. Such calculations show that the lifetime suddenly diminishes when the conduction electron energy reaches the plasmon energy, whereas the UPS spectra show evidence in this range of a strong relaxation mechanism with an increased production of low energy secondary electrons. We propose that in this case the electronic relaxation proceeds in two steps : excitation of a plasmon by the high energy electron, the latter decaying into individual electron-hole pairs, as in the case of metals. This process is observed for the first time in an insulator and, on account of its high efficiency, should be introduced in the models of laser breakdown under high intensity

    First-principles GW calculations for DNA and RNA nucleobases

    Full text link
    On the basis of first-principles GW calculations, we study the quasiparticle properties of the guanine, adenine, cytosine, thymine, and uracil DNA and RNA nucleobases. Beyond standard G0W0 calculations, starting from Kohn-Sham eigenstates obtained with (semi)local functionals, a simple self-consistency on the eigenvalues allows to obtain vertical ionization energies and electron affinities within an average 0.11 eV and 0.18 eV error respectively as compared to state-of-the-art coupled-cluster and multi-configurational perturbative quantum chemistry approaches. Further, GW calculations predict the correct \pi -character of the highest occupied state, thanks to several level crossings between density functional and GW calculations. Our study is based on a recent gaussian-basis implementation of GW with explicit treatment of dynamical screening through contour deformation techniques.Comment: 5 pages, 3 figure

    Infinite-layer fluoro-nickelates as d9d^9 model materials

    Get PDF
    We study theoretically the fluoro-nickelate series AANiF2_2 (A=A= Li, Na, K, Rb, Cs) in the tetragonal P4/mmmP4/mmm infinite-layer structure. We use density functional theory to determine the structural parameters and the electronic band structure of these unprecedented compounds. Thus, we predict these materials as model d9d^9 systems where the Ni1+^{1+} oxidation is realized and the low-energy physics is completely determined by the Ni-3dd bands only. Fluoro-nickelates of this class thus offer an ideal platform for the study of intriguing physics that emerges out of the special d9d^9 electronic configuration, notably high-temperature unconventional superconductivity.Comment: 6 pages, 4 tables, and 6 figure

    On aspects of self-consistency in the Dyson-Schwinger approach to QED and \lambda (\phi^\star \phi)^2 theories

    Full text link
    We investigate some aspects of the self-consistency in the Dyson-Schwinger approach to both the QED and the self-interacting scalar field theories. We prove that the set of the Dyson-Schwinger equations, together with the Green-Ward-Takahashi identity, is equivalent to the analogous set of integral equations studied in condensed matter, namely many-body perturbation theory, where it is solved self-consistently and iteratively. In this framework, we compute the non-perturbative solution of the gap equation for the self-interacting scalar field theory.Comment: 9 pages, to appear on Phys. Rev.

    The bandstructure of gold from many-body perturbation theory

    Full text link
    The bandstructure of gold is calculated using many-body perturbation theory (MBPT). Different approximations within the GW approach are considered. Standard single shot G0W0 corrections shift the unoccupied bands up by ~0.2 eV and the first sp-like occupied band down by ~0.4 eV, while leaving unchanged the 5d occupied bands. Beyond G0W0, quasiparticle self-consistency on the wavefunctions lowers the occupied 5d bands by 0.35 eV. Globally, many-body effects achieve an opening of the interband gap (5d-6sp gap) of 0.35 to 0.75 eV approaching the experimental results. Finally, the quasiparticle bandstructure is compared to the one obtained by the widely used HSE (Heyd, Scuseria, and Ernzerhof) hybrid functional

    Transport properties of molecular junctions from many-body perturbation theory

    Full text link
    The conductance of single molecule junctions is calculated using a Landauer approach combined to many-body perturbation theory MBPT) to account for electron correlation. The mere correction of the density-functional theory eigenvalues, which is the standard procedure for quasiparticle calculations within MBPT, is found not to affect noticeably the zero-bias conductance. To reduce it and so improve the agreement with the experiments, the wavefunctions also need to be updated by including the non-diagonal elements of the self-energy operator
    • …
    corecore