158 research outputs found

    Exciton delocalization in the antenna of purple bacteria: Exciton spectrum calculations using X-ray data and experimental site inhomogeneity

    Get PDF
    AbstractElectron absorption and circular dichroism spectra of the peripheral light-harvesting complex (LH2) of photosynthetic purple bacteria were calculated taking into account the real-life spatial arrangement and experimental inhomogeneous broadening of bacteriochlorophyll molecules. It was shown that strong excitonic interactions between 18 bacteriochlorophyll molecules (BChl850) within the circular aggregate of the LH2 complex result in an exciton delocalization over all these pigment molecules. The site inhomogeneity (spectral disorder) practically has no influence on exciton delocalization. The splitting between two lowest exciton levels corresponds to experimentally revealed splitting by hole-burning studies of the LH2 complex

    Role of quantum coherence in chromophoric energy transport

    Get PDF
    The role of quantum coherence and the environment in the dynamics of excitation energy transfer is not fully understood. In this work, we introduce the concept of dynamical contributions of various physical processes to the energy transfer efficiency. We develop two complementary approaches, based on a Green's function method and energy transfer susceptibilities, and quantify the importance of the Hamiltonian evolution, phonon-induced decoherence, and spatial relaxation pathways. We investigate the Fenna-Matthews-Olson protein complex, where we find a contribution of coherent dynamics of about 10% and of relaxation of 80%.Comment: 5 pages, 3 figures, included static disorder, correlated environmen

    Ab-Initio Calculation of Molecular Aggregation Effects: a Coumarin-343 Case Study

    Get PDF
    We present time-dependent density functional theory (TDDFT) calculations for single and dimerized Coumarin-343 molecules in order to investigate the quantum mechanical effects of chromophore aggregation in extended systems designed to function as a new generation of sensors and light-harvesting devices. Using the single-chromophore results, we describe the construction of effective Hamiltonians to predict the excitonic properties of aggregate systems. We compare the electronic coupling properties predicted by such effective Hamiltonians to those obtained from TDDFT calculations of dimers, and to the coupling predicted by the transition density cube (TDC) method. We determine the accuracy of the dipole-dipole approximation and TDC with respect to the separation distance and orientation of the dimers. In particular, we investigate the effects of including Coulomb coupling terms ignored in the typical tight-binding effective Hamiltonian. We also examine effects of orbital relaxation which cannot be captured by either of these models

    Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems

    Get PDF
    The photophysical and photochemical reactions, after light absorption by a photosynthetic pigment–protein complex, are among the fastest events in biology, taking place on timescales ranging from tens of femtoseconds to a few nanoseconds. The advent of ultrafast laser systems that produce pulses with femtosecond duration opened up a new area of research and enabled investigation of these photophysical and photochemical reactions in real time. Here, we provide a basic description of the ultrafast transient absorption technique, the laser and wavelength-conversion equipment, the transient absorption setup, and the collection of transient absorption data. Recent applications of ultrafast transient absorption spectroscopy on systems with increasing degree of complexity, from biomimetic light-harvesting systems to natural light-harvesting antennas, are presented. In particular, we will discuss, in this educational review, how a molecular understanding of the light-harvesting and photoprotective functions of carotenoids in photosynthesis is accomplished through the application of ultrafast transient absorption spectroscopy

    Two different charge-separation pathways in photosystem II

    Get PDF
    Charge separation is an essential step in the conversion of solar energy into chemical energy in photosynthesis. To investigate this process, we performed transient absorption experiments at 77 K with various excitation conditions on the isolated Photosystem II reaction center preparations from spinach. The results have been analyzed by global and target analysis and demonstrate that at least two different excited states, (Ch

    Linear dichroism and circular dichroism in photosynthesis research

    Get PDF
    The efficiency of photosynthetic light energy conversion depends largely on the molecular architecture of the photosynthetic membranes. Linear- and circular-dichroism (LD and CD) studies have contributed significantly to our knowledge of the molecular organization of pigment systems at different levels of complexity, in pigment–protein complexes, supercomplexes, and their macroassemblies, as well as in entire membranes and membrane systems. Many examples show that LD and CD data are in good agreement with structural data; hence, these spectroscopic tools serve as the basis for linking the structure of photosynthetic pigment–protein complexes to steady-state and time-resolved spectroscopy. They are also indispensable for identifying conformations and interactions in native environments, and for monitoring reorganizations during photosynthetic functions, and are important in characterizing reconstituted and artificially constructed systems. This educational review explains, in simple terms, the basic physical principles, and theory and practice of LD and CD spectroscopies and of some related quantities in the areas of differential polarization spectroscopy and microscopy

    Functional Subsystems and Quantum Redundancy in Photosynthetic Light Harvesting

    Full text link
    The Fenna-Matthews-Olson (FMO) antennae complex, responsible for light harvesting in green sulfur bacteria, consists of three monomers, each with seven chromophores. Here we show that multiple subsystems of the seven chromophores can transfer energy from either chromophore 1 or 6 to the reaction center with an efficiency matching or in many cases exceeding that of the full seven chromophore system. In the FMO complex these functional subsystems support multiple quantum pathways for efficient energy transfer that provide a built-in quantum redundancy. There are many instances of redundancy in nature, providing reliability and protection, and in photosynthetic light harvesting this quantum redundancy provides protection against the temporary or permanent loss of one or more chromophores. The complete characterization of functional subsystems within the FMO complex offers a detailed map of the energy flow within the FMO complex, which has potential applications to the design of more efficient photovoltaic devices
    corecore