4,761 research outputs found

    Electronic properties of emergent topological defects in chiral pp-wave superconductivity

    Full text link
    Chiral pp-wave superconductors in applied magnetic field can exhibit more complex topological defects than just conventional superconducting vortices, due to the two-component order parameter (OP) and the broken time-reversal symmetry. We investigate the electronic properties of those exotic states, some of which contain clusters of one-component vortices in chiral components of the OP and/or exhibit skyrmionic character in the \textit{relative} OP space, all obtained as a self-consistent solution of the microscopic Bogoliubov-de Gennes equations. We reveal the link between the local density of states (LDOS) of the novel topological states and the behavior of the chiral domain wall between the OP components, enabling direct identification of those states in scanning tunneling microscopy. For example, a skyrmion always contains a closed chiral domain wall, which is found to be mapped exactly by zero-bias peaks in LDOS. Moreover, the LDOS exhibits electron-hole asymmetry, which is different from the LDOS of conventional vortex states with the same vorticity. Finally, we present the magnetic field and temperature dependence of the properties of a skyrmion, indicating that this topological defect can be surprisingly large in size, and can be pinned by an artificially indented non-superconducting closed path in the sample. These features are expected to facilitate the experimental observation of skyrmionic states, thereby enabling experimental verification of chirality in emerging superconducting materials

    Generation of optimal trajectories for Earth hybrid pole sitters

    Get PDF
    A pole-sitter orbit is a closed path that is constantly above one of the Earth's poles, by means of continuous low thrust. This work proposes to hybridize solar sail propulsion and solar electric propulsion (SEP) on the same spacecraft, to enable such a pole-sitter orbit. Locally-optimal control laws are found with a semi-analytical inverse method, starting from a trajectory that satisfies the pole-sitter condition in the Sun-Earth circular restricted three-body problem. These solutions are subsequently used as first guess to find optimal orbits, using a direct method based on pseudospectral transcription. The orbital dynamics of both the pure SEP case and the hybrid case are investigated and compared. It is found that the hybrid spacecraft allows savings on propellant mass fraction. Finally, it is shown that for sufficiently long missions, a hybrid pole-sitter, based on mid-term technology, enables a consistent reduction in the launch mass for a given payload, with respect to a pure SEP spacecraft

    Displaced geostationary orbit design using hybrid sail propulsion

    Get PDF
    Because of an increase in the number of geostationary spacecraft and the limits imposed by east–west spacing requirements, the geostationary orbit is becoming congested. To increase its capacity, this paper proposes to create new geostationary slots by displacing the geostationary orbit either out of or in the equatorial plane by means of hybrid solar sail and solar electric propulsion. To minimize propellant consumption, optimal steering laws for the solar sail and solar-electric-propulsion thrust vectors are derived and the performance in terms of mission lifetime is assessed. For comparison, similar analyses are performed for conventional propulsion, including impulsive and pure solar electric propulsion. It is shown that hybrid sails outperform these propulsion techniques and that out-of-plane displacements outperform in-plane displacements. The out-of-plane case is therefore further investigated in a spacecraft mass budget to determine the payload mass capacity. Finally, two transfers that enable a further improvement of the performance of hybrid sails for the out-of-plane case are optimized using a direct pseudospectral method: a seasonal transit between orbits displaced above and below the equatorial plane and a transit to a parking orbit when geostationary coverage is not needed. Both transfers are shown to require only a modest propellant budget, outweighing the improvements they can establish

    An earth pole-sitter using hybrid propulsion

    Get PDF
    In this paper we investigate optimal pole-sitter orbits using hybrid solar sail and solar electric propulsion (SEP). A pole-sitter is a spacecraft that is constantly above one of the Earth's poles, by means of a continuous thrust. Optimal orbits, that minimize propellant mass consumption, are found both through a shape-based approach, and solving an optimal control problem, using a direct method based on pseudo-spectral techniques. Both the pure SEP case and the hybrid case are investigated and compared. It is found that the hybrid spacecraft allows consistent savings on propellant mass fraction. Finally, is it shown that for sufficiently long missions (more than 8 years), a hybrid spacecraft, based on mid-term technology, enables a consistent reduction in the launch mass for a given payload, with respect to a pure SEP spacecraft

    PSU20 Estimating Preferences for Economic Evaluation in Patients with Localized Prostate Cancer

    Get PDF

    Specific heat amplitude ratios for anisotropic Lifshitz critical behaviors

    Full text link
    We determine the specific heat amplitude ratio near a mm-axial Lifshitz point and show its universal character. Using a recent renormalization group picture along with new field-theoretical ϵL\epsilon_{L}-expansion techniques, we established this amplitude ratio at one-loop order. We estimate the numerical value of this amplitude ratio for m=1m=1 and d=3d=3. The result is in very good agreement with its experimental measurement on the magnetic material MnPMnP. It is shown that in the limit m→0m \to 0 it trivially reduces to the Ising-like amplitude ratio.Comment: 8 pages, RevTex, accepted as a Brief Report in Physical Review
    • …
    corecore