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Abstract 

Due to an increase in number of geostationary spacecraft and limits imposed by east-west 

spacing requirements, the geostationary orbit is becoming congested. To increase its capacity, this 

paper proposes to create new geostationary slots by displacing the geostationary orbit either out of 

or in the equatorial plane by means of hybrid solar sail and solar electric propulsion. To minimize 

propellant consumption, optimal steering laws for the solar sail and solar electric propulsion thrust 

vectors are derived and the performance in terms of mission lifetime is assessed. For comparison, 

similar analyses are performed for conventional propulsion, including impulsive and pure solar 

electric propulsion. It is shown that hybrid sails outperform these propulsion techniques and that 

out-of-plane displacements outperform in-plane displacements. The out-of-plane case is therefore 

further investigated in a spacecraft mass budget to determine the payload mass capacity. Finally, 

two transfers that enable a further improvement of the performance of hybrid sails for the out-of-

plane case are optimized using a direct pseudo-spectral method: a seasonally transit between orbits 

displaced above and below the equatorial plane and a transit to a parking orbit when geostationary 

coverage is not needed. Both transfers are shown to require only a modest propellant budget, 

outweighing the improvements they can establish. 
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Nomenclature 

a  Thrust induced acceleration vector 

A  Area 

1 2,c c  Constants 

0g  Earth standard gravitational acceleration at surface , 9.80665m/s
2 

h  Out-of-plane displacement distance 

obli
 

Obliquity of the ecliptic 

spI  Specific impulse 

J  Cost function 

k  Specific performance 

L  Mission lifetime 

m  Mass 

gimbalm  Gimbal mass 

Pm  SEP thruster power source mass 

paym  Payload mass 

propm  Propellant mass 

tankm  SEP propellant tank mass 

n  Integer
 
 

n̂  Solar sail acceleration unit vector
 
 

N  Number of impulses per orbit 

P  Power 

r  Position vector 

t  Time 

T  SEP thrust vector 

pt  Time in between impulses 

u  Control vector 

U  Effective potential 

V  Velocity
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W  Solar energy flux density at 1 AU, 1367 W/m
2 

x  State vector 

 

  Pitch angle 

  Solar sail lightness number 

  Sun incidence angle 

  Yaw angle 

d  Distance between spacecraft and GEO 

m  Change in mass 

r  In-plane displacement 

t  Time interval 

V  Instantaneous velocity change 

  Efficiency 

  In-plane angle (cylindrical/spherical coordinates) 

  Gravitational parameter of central body 

  Projected orbital radius (cylindrical coordinates) 

  System loading 

*  Critical sail loading, 1.53 g/m
2
 


 

Orbital period 

  Out-of-plane angle (spherical coordinates) 


 Angle in Earth orbital plane measured from winter solstice 

  Angle between 
sr and equatorial plane 

ω  Angular velocity vector 

  Orbital angular velocity of a circular Keplerian orbit with NKOr r  

 

Subscripts 

0  At time 0t t  

C  In Earth fixed inertial reference frame 

E  In Earth fixed rotating reference frame 
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Superscripts 

 

 

 

 

 

 

 

Introduction 

The geostationary orbit (GEO) hosts satellites for telecommunication and Earth observation. With an orbit period 

equal to the Earth‟s rotational period, spacecraft in GEO are stationary with respect to an observer on the Earth, 

allowing for a continuous downlink to terrestrial communications users. But, with only one such unique orbit, the 

GEO has become congested over time, especially above the continents where concentrations of geostationary 

satellites are greatest [1].  

GEO  Referring to geostationary orbit 

f  At final time 

i  At i
th

 node 

max  Maximum  

min  Minimum 

NKO  Referring to non-Keplerian orbit 

, ,r    Referring to spherical coordinate components 

R  In rotating reference frame 

s  Referring to solar sail 

S  Referring to Sun 

SA  Referring to solar array 

SEP  Referring to solar electric propulsion 

TF  Referring to thin film solar cells 

- Prior to impulsive V  

+ After impulsive V  

* Optimal 

  First order derivative 

  Second order derivative 

̂  Unit vector 
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In order to create new geostationary slots, this paper investigates the use of displaced non-Keplerian orbits 

(NKOs) to displace the GEO either above/below or in the equatorial plane. Such displaced NKOs can be generated 

by applying a continuous, thrust-induced acceleration to counterbalance or augment part of the local gravitational 

acceleration [2]. The existence, stability and control of displaced NKOs have been studied for both the two- and 

three body problem [3-5] and numerous applications have been proposed. These applications range from spacecraft 

proximity operations [6] to NKOs displaced high above the ecliptic to enable imaging and communication for high 

latitudes [7] and displaced NKOs for lunar far side communication and lunar south pole coverage [8-9].  

Solar sails have often been proposed as spacecraft propulsion system to maintain displaced NKOs [2, 4, 7-8, 10]. 

Solar sails exploit the radiation pressure generated by photons reflecting off a large, highly reflecting sail to produce 

a continuous, propellant-less thrust [2]. Although the concept of solar sailing has been considered for many years, 

only recently has a small sail been successfully deployed by the Japanese demonstrator mission IKAROS and by 

NASA‟s NanoSail-D nanosatellite [11-12]. Despite this advance, the Technology Readiness Level (TRL) of solar 

sailing as primary propulsion system on a reasonable sized mission is still rather low. That, in combination with a 

high advancement degree of difficulty [13] and the inability to generate a thrust component in the direction of the 

Sun [2] limits the applications of solar sailing.  

Solar electric propulsion (SEP) has also been considered as a means to maintain displaced NKOs [9, 14]. SEP 

uses the acceleration of ions to produce a relatively low thrust, but enables high specific impulses. It has flown on 

multiple missions including Deep Space 1 (1998), SMART-1 (2003), Dawn (2007) and GOCE (2009), resulting in a 

high TRL and a low advancement degree of difficulty. Nevertheless, the applications of SEP are also limited due to a 

bound on the available propellant mass.  

Considering the disadvantages and limitations of solar sails and SEP, some authors are suggesting to hybridize 

the two systems, because the separate systems complement each other: since only small solar sails will be required, 

the hybridization lowers the solar sail advancement degree of difficulty. Furthermore, while the solar sail lowers the 

demand on the SEP propellant mass, the SEP system can provide a thrust component in the direction of the Sun 

(which the solar sail is unable to generate). This is under the assumption that the SEP system is mounted on a gimbal 

such that the two propulsion systems can steer independently of each other. Hybrid sails have already been suggested 

to enable interplanetary transfers [15-16], to allow for periodic orbits in the vicinity of the Lagrange points in the 

Earth-Moon system for lunar communication purposes [17], and to generate artificial equilibria in the Earth-Sun 
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three-body problem [18-20]. All studies show to some extent an improvement for hybrid sails over the use of pure 

SEP or pure solar sailing in terms of propellant mass consumption, required thrust magnitude levels and/or initial 

spacecraft mass. 

In this paper, we propose the use of hybrid sails to enable out-of-plane and in-plane displaced GEOs, thereby 

extending initial research conducted for out-of-plane displaced GEOs in Ref. [21]. Furthermore, compared to the 

solar sail levitated GEO proposed in Ref. [10] and [22], the displaced GEO proposed in this paper will allow 

spacecraft to be stationary with respect to their ground station, because the residual in-plane acceleration that causes 

a drift in the pure solar sail case can be cancelled by the SEP thruster. Also, displacements well beyond the 

geostationary station keeping box will be enabled using relatively small, near-term solar sails.  

After a brief introduction in Section I of the general theory underlying two-body displaced NKOs using 

continuous control, the out-of-plane and in-plane displaced GEOs as investigated in this paper will be defined. Using 

these definitions, Sections II and III will derive the performance of impulsive and pure SEP control for maintaining 

the displaced GEO in terms of propellant consumption and mission lifetime. Similar results will be obtained for the 

hybrid sail case in Section IV by deriving the SEP and solar sail optimal steering laws. Since the out-of-plane case 

outperforms the in-plane case, the out-of-plane case will be used for a detailed mass budget analysis in Section V to 

assess the performance in terms of payload mass capacity. Finally, two types of transfer that improve the 

performance of the out-of-plane displaced GEO will be optimized for the SEP propellant consumption by solving the 

accompanying optimal control problem in Section VI and results in terms of SEP propellant mass will be presented. 

I. Displaced GEOs 

Displaced GEOs, or displaced NKOs in general, can be found by seeking equilibrium solutions to the two-body 

problem in a rotating frame of reference. A transformation to an inertial frame will subsequently show that the 

spacecraft executes a circular orbit displaced away from the nominal Keplerian orbit [3]. Fig. 1 shows these 

reference frames where  , ,R R RR x y z  is a rotating frame of reference that rotates with constant angular velocity 

ˆ
Rω = z  with respect to an inertial frame ( , , )I X Y Z , where the Rz  axis and Z  axis coincide. Furthermore, to 

maintain the displaced NKO a thrust-induced acceleration a  is assumed. The equations of motion of the spacecraft 

in the rotating reference frame are then given by: 
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 2 U   r ω r a   (1) 

with  the gravitational parameter of the central body and U  the effective potential that combines the gravitational 

potential of the central body and a potential that represents the centripetal acceleration: 

 
21

( / )
2

U r   ω r  (2) 

Equilibrium solutions can subsequently be found by setting 0 r r   in Eq. (1), eliminating the first two terms: 

 U  a  (3) 

which directly gives the magnitude and direction of the thrust acceleration required to maintain the displaced NKO. 

 

Fig. 1 Displaced non-Keplerian orbit reference frames. 

Because ω  is constant, no transverse component of the thrust can exist, requiring the thrust vector to lie in the 

plane spanned by the radius vector and the vertical axis. The thrust direction is therefore defined by the pitch angle 

  only: 

 
ˆ

tan
ˆ

R

R

U

U







z

z
 (4) 

Finally, the potential U  can be written using a set of cylindrical polar coordinates ( , , )h   as shown in Fig. 1: 

  21
( ) /

2
U r 

 
   

 
  (5) 

Substituting Eq. (5) into Eq. (4) and (3) results in the following required thrust direction and magnitude to 

maintain the displaced NKO: 

   
2

tan ( , ; ) 1h
h


       (6) 

X  

Y  

RZ z  

Rx  

Ry  
ω  

r  

h  

  

a    Displaced NKO 

  

Spacecraft 
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  
2

2 2 2 2 4

* *( , ; )a h h         (7) 

with   the orbital angular velocity of a circular Keplerian orbit with a radius equal to the radius of the NKO: 

  
3/2

3 2 2

* r h       (8) 

A. Out-of-plane displaced GEO 

While the expressions derived above hold for any two-body displaced NKO, it is given for the displaced GEO 

that 3/GEO GEOr    , with 
GEOr   42164.1696 km. Furthermore, assuming a displacement h  to create an out-

of-plane displaced GEO, Eq. (7) can be used to find the corresponding projected radius   that minimizes the 

required acceleration. Taking the first derivative of Eq. (7) with respect to   and setting it equal to zero yields the 

following condition: 

 

2

6 3 2

2 2 2
3 2 0r r h r

  

  

 
    

 
 (9) 

The complex and negative real roots of this sixth order polynomial are ignored and Descartes‟ Rule of Signs is 

applied to find that Eq. (9) has one sign change and therefore one positive real root [23]. An analytical solution to 

Eq. (9) was not found, therefore a numerical method in the form of Newton‟s method was applied [24]. The results 

for a large range of out-of-plane displacements are illustrated in Fig. 2, which shows the acceleration contour plots 

for GEO  and includes the solution to Eq. (9). The figure shows the correctness of the approach as the solution 

connects the extrema of the separate contour lines, i.e. the minimum acceleration required to provide a particular out-

of-plane displacement.  

The figure furthermore shows that, clearly, the smaller the out-of-plane displacement, the smaller the required 

acceleration. However, for the displaced GEO, the minimum displacement is predefined by the geostationary station 

keeping box to prevent the spacecraft from interfering with other satellites in the GEO. Combining International 

Telecommunication Union (ITU) regulations and regulations drawn up by individual countries such as by the US 

Federal Communications Commission (FCC), a geostationary station keeping box of 0.1° - 0.2° can be defined, 

equaling a box size of 73.6 - 147.2 km centered around the geostationary satellite [25-26]. This leads to a range of 

displacement distances of 36.8 – 147.2 km, where 36.8 km represents the case that the spacecraft just hovers above 
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the GEO station keeping box, while the higher displacements also take a station keeping box for the displaced 

spacecraft into account. Three displacement distances will therefore be considered in this paper, namely 35, 75 and 

150 km. Solving Eq. (9) for these three displacements and subsequently using Eq. (6) to find the required thrust 

acceleration pitch angle, provides the optimal displaced GEOs as defined in Table 1. From the pitch angle it becomes 

clear that an almost pure out-of-plane acceleration (i.e. 0  ) is required. Eq. (6) subsequently shows that, to obtain 

0  , the condition 
* 
 
should be satisfied, which in its turn requires 

GEOr r . Substituting this into Eq. (6) and 

(7), gives the required thrust direction and magnitude to maintain such a displaced GEO:  

 tan 0   (10)  

 
2

* 3

GEO

h
a h

r


   (11) 

This type of orbit corresponds to a so-called „Type I‟ NKO, which is stable for modest displacements [2]. A 

schematic of this type of out-of-plane displaced GEO is provided in Fig. 3. Contrary to the cases in Table 1, the Type 

I displaced GEO allows for an analytical derivation of the performance of hybrid sail control, and will therefore be 

used in this paper for the out-of-plane case. Especially since the difference in acceleration with respect to the 

minimized accelerations given in Table 1 is only 6.3 × 10
-4

 percent at maximum (i.e. for h  150 km) and will 

therefore only result in a slightly conservative estimate of the performance. 

 

Fig. 2 Acceleration contour plots for GEO  including the minimized acceleration for a given out-of-plane 

displacement h . The acceleration is dimensionless with respect to the gravitational acceleration at unit 

planet radius and is marked on the contours. 
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Table 1 Definition of minimum acceleration out-of-plane displaced GEOs. 

h , km  , km  , deg
 

a , mm/s
2

 
±35 42164.165 0.0476 0.1861 
±75 42164.147 0.1019 0.3988 

±150 42164.080 0.2038 0.7976 

 

Fig. 3 Definition of out-of-plane and in-plane displaced GEOs. 

B. In-plane displaced GEO 

Rather than displacing the GEO out-of-plane, another option would be to displace the GEO in-plane, i.e. in the 

equatorial plane, see Fig. 3. Substituting 0h   into Eq. (6) and (7) provides the thrust direction and magnitude 

required to maintain such an in-plane displaced GEO: 

 
1

2
    (12)  

  2 2

*GEOa      (13) 

with 3
*    and GEOr r   , where the radial displacement 0r   and 0r   for orbits displaced 

outside or inside the GEO, respectively. Eq. (12) furthermore shows that a pure radial thrust is required, directed 

either inward ( 0  ) or outward ( 0  ), depending on the sign of r , to increase or decrease the angular velocity 

of a Keplerian orbit with radius   to the angular velocity of the GEO.  

An initial assessment of the relative performance of the out-of-plane and in-plane displaced orbits can be derived 

from the contour plot in Fig. 2. The figure shows that for small and equal displacements in out-of-plane (along the 

vertical axis) and in-plane (along the horizontal axis) direction, the ratio of the required accelerations is 

a  Out-of-plane 

 

X  

  

Rx  

GEO 
GEOr  

GEOr  

Ry  

h  Y  

r  
a  

In-plane  

 

RZ z  
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approximately 3, as can also be shown from Hill‟s equations [24]. The in-plane displacement thus requires an 

acceleration three times higher than an equally displaced out-of-plane orbit. The acceleration contours furthermore 

show that it is slightly more advantageous to displace the orbit outside ( 0r  ) the GEO than inside: for the same 

acceleration a larger displacement outside than inside the GEO can be achieved. This paper will therefore always 

consider the 0r   case (as depicted in Fig. 3) for the in-plane displaced GEO.  

II. Impulsive control 

Although a continuous acceleration is required to achieve a displaced NKO, impulsive control using a chemical 

propulsion system can be employed to maintain a minimum displacement from a Keplerian orbit. By providing 

multiple impulsive velocity changes along the displaced GEO, the spacecraft can „bounce‟ on the displaced orbit. 

Then, at time 0t   the spacecraft is located at the displaced GEO and an instantaneous change in velocity, or 

impulse, V , is given. This will cause the spacecraft to slightly move away from the displaced GEO. However, 

since no thrust is applied in between pulses, the spacecraft follows a natural Keplerian orbit after the impulse, 

causing the spacecraft to cross the displaced GEO after some time. Upon this crossing, another impulse is given to 

reverse the spacecraft velocity and start the cycle again. This concept is illustrated in Fig. 4 for an out-of-plane 

displaced GEO. The use of impulsive control to maintain displaced NKOs has been investigated before and has 

among others been suggested to hover above Saturn‟s rings [3, 27] and to maintain a local cluster of spacecraft for 

high resolution imaging of terrestrial or astronomical targets using interferometry techniques [28]. 

 

Fig. 4 Illustration of impulsive control for an out-of-plane displaced GEO and definition of reference frame 

for Hill’s equations. 

X  
GEO 

V  

Displaced GEO 

V  V  
V  

V  

V  

Y

 

Z  

Spacecraft 
z  

GEOω

 

y  
P  

0r  

x  
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For small displacements, the required magnitude of the impulses can be computed using the linearized Hill‟s 

equations that represent the dynamics of a spacecraft in the vicinity of a point P  on a circular Keplerian reference 

orbit, see Fig. 4 [3, 24]. A detailed derivation is given in Ref. [3] and is therefore not repeated here. Only the results 

are provided. For the first impulse the following holds: 

 
 
 

2

0

,0 0

3 tan 2

3 8tan 2

GEO p GEO p

x

GEO p GEO p

x t t
V x

t t

 

 
  


  (14) 

 
 

 
,0 0 0

2 tan 2
6

8tan 2 3

GEO p GEO p

y GEO

GEO p GEO p

t t
V y x

t t

 


 


  


  (15) 

  ,0 0 0 tan 2z GEO GEO pV z z t     (16) 

with 0x  and 0z  defined in the rotating reference frame shown in Fig. 4 and 
pt N , where   is the orbital period 

and N  the number of impulses per orbit. For the out-of-plane displaced GEO ( ) (0)px t x   ,
 

( ) (0)py t y 
 
and

 

( ) (0)pz t z  
 
and therefore only repeated impulses in x  and z  direction have to be provided, but with double the 

required V  to reverse the direction of the velocity vector. For an in-plane displaced GEO ( ) (0)px t x   ,
 

( ) (0)py t y 
 
and

 
( ) (0) 0pz t z  

 
, which requires only repeated, double magnitude impulses in x  direction.  

Fig. 5a shows the results for an out-of-plane displaced GEO levitated 35 km above the equatorial plane for one 

orbital revolution and for different numbers of impulses along the orbit. The top plot in Fig. 5b furthermore shows 

the V  required to maintain such an orbit, while the bottom plot provides similar information for a 35 km in-plane 

displaced orbit. The figure clearly shows the larger V  required for the in-plane case than for the out-of-plane case, 

as expected from the analysis in Section I.B. It also shows that a higher number of pulses is advantageous when 

displacing the orbit out-of-plane, i.e. the penalty on the V  due to pulsed rather than continuous control becomes 

less. Contrary, for the in-plane displaced GEO, a higher number of impulses is disadvantageous, because, although 

the amount of V  per impulse decreases, the decrease is not sufficient to compensate for the larger number of 

impulses that needs to be provided.  

The analysis in Fig. 5 can be extended from one orbital revolution to multiple revolutions to obtain the 

performance of impulsive control for maintaining the displaced GEO in terms of mission lifetime. This lifetime, L , 

is defined as the epoch at which a particular mass fraction, 0/fm m , is obtained:  
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0 0 0( )f propm m m m m   (17) 

with 
fm , 

0m  and 
propm  the final, initial and propellant mass, respectively. The propellant mass can be computed 

through an iterative approach and using the rocket equation that gives the ratio of the mass prior ( m ) and after 

( m ) the impulses providing the combined V : 

 0sp

V

I gm
e

m





  (18) 

with 
spI  the specific impulse and 

0g  the Earth gravity constant. Eq. (18) in combination with the results in Fig. 5b 

immediately shows that the out-of-plane displaced GEO will outperform the in-plane displaced GEO due to the 

smaller amount of V  required. The results, as shown in Fig. 6, are therefore only provided for the out-of-plane 

case. Fig. 6 considers both a range of specific impulses (from current to near term and far-future technology) and a 

range of mass fractions for the three displacement distances of 35, 75 and 150 km. Furthermore, 10 impulses per 

orbit are assumed to provide a balance between the complexity of the mission, the penalty on the V for pulsed 

control and the deviation from the nominal displaced orbit. Note that the symmetry of the problem causes the results 

for GEOs displaced above and below the equatorial plane to be exactly the same.  

 

a) b) 

  

Fig. 5 (a) 35 km out-of-plane displaced GEO with impulsive control (b) Required V  for a 35 km out-of-

plane (top) and in-plane (bottom) displaced GEO for different numbers of impulses per orbit N . 

 

GEO 

Displaced 

GEO 
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a) b) c) 

h  = ±35 km h  = ±75 km h  = ±150 km 

   

Fig. 6 Out-of-plane displaced GEOs maintained with impulsive control ( 10N  ): mission time L  as a 

function of the specific impulse spI  and the mass fraction 0/fm m , for different values of the displacement 

distance h . 

The graphs in Fig. 6 can be interpreted in different ways. For example, for a 35 km displaced GEO, an average 

specific impulse of 320 s [29] and a mass fraction of 0.5 a lifetime of 0.36 years can be achieved. Considering a 

lifetime of 10 - 15 years for current geostationary spacecraft, Fig. 6 shows that similar lifetimes cannot be achieved 

using impulsive control. Only a maximum of 1.9 years can be obtained for the smallest displacement distance and for 

extreme values of the specific impulse and the mass fraction. The cause of this poor performance lies in the penalty 

on the V  for pulsed rather than continuous control and the low specific impulse of chemical propulsion systems.  

III. SEP control 

This section investigates the use of SEP to maintain the displaced GEO in order to improve the performance of 

the displaced GEO with respect to the use of impulsive control. The performance of SEP control in terms of mission 

lifetime for a particular mass fraction can be assessed by considering the following differential equation for the mass: 

 
0sp

T
m

I g
   (19) 

with T  the SEP thrust magnitude. Since the required acceleration is constant (see Eq. (7)), the lifetime can be 

derived analytically from Eq. (19). Substituting T a m   into Eq. (19) and rearranging gives: 

 

0 0 0

f fm t

spm t

dm a
dt

m I g
    (20) 
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Evaluating these integrals and setting 
0t  0 yields the following lifetime: 

 
00ln

sp

f

f

I gm
L t

m a

 
   

 
 

 (21) 

Eq. (21) shows that, clearly, a higher required acceleration reduces the mission lifetime. Considering the fact that 

the in-plane displaced GEO requires a larger acceleration than an equally displaced orbit out-of-plane (see Section 

I.B), a shorter lifetime can be expected for the in-plane case. The results, as shown in Fig. 7, are therefore again only 

provided for the out-of-plane case.  

Fig. 7 shows the mission lifetime for an arbitrary initial mass, a wide range of specific impulses and mass 

fractions and for the three displacement distances of 35, 75 and 150 km. Again, the results hold both for GEOs 

displaced above the equatorial plane and for those displaced below the equatorial plane, due to the symmetry of the 

problem.  

a) b) c) 

h  = ±35 km h  = ±75 km h  = ±150 km 

   

Fig. 7 Out-of-plane displaced GEOs maintained with SEP control: mission time L  (a maximum of 15 years is 

considered) as a function of the specific impulse spI  and the mass fraction 0/fm m , for different values of 

the displacement distance h . 

The graphs can be interpreted similarly to the graphs in Fig. 6. Comparing Fig. 7 with Fig. 6 immediately shows a 

dramatic improvement of the lifetime for an SEP controlled spacecraft over an impulsive controlled spacecraft. 

Again, considering a mass fraction of 0.5 and assuming a currently feasible SEP specific impulse of 3200 s (e.g. as 

flown on the Hayabusa spacecraft [30]), the lifetime is increased from 4.3, 2.0 and 1.0 months for impulsive control 

to 3.7, 1.7 and 0.9 years for 35, 75 and 150 km displaced orbits, respectively. However, lifetimes of 10 - 15 years as 
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for current geostationary spacecraft can still only be achieved for the smallest displacement of 35 km and either for 

low mass fractions (e.g. 0.1fm   and 2600spI   s) or for high specific impulses (e.g. 0.45fm   and 7500spI   s). 

IV. Hybrid sail control 

To improve the performance of the displaced GEO even further, this section will investigate the use of hybrid sail 

control. For this, the acceleration required to maintain the displaced GEO, a , see Eq. (1) or equivalently Eq. (10) 

and (11) for the out-of-plane case and Eq. (12) and (13) for the in-plane case, is written as the sum of the acceleration 

generated by the SEP system, 
SEPa , and the acceleration produced by the solar sail, 

sa :  

 
SEP s a a a  (22) 

To maximize the lifetime of the mission, the objective is to minimize the magnitude of the acceleration required 

from the SEP system: 

    min minSEP sa  a a  (23) 

where the acceleration generated by the solar sail is given by: 

  
2

2
ˆ ˆ ˆS

s s

sr


 a n r n  (24) 

with S  the gravitational parameter of the Sun. Note that an ideal, i.e. a perfectly reflecting, sail is assumed. The 

unit vector in the direction of the solar radiation pressure force, n̂ , is therefore directed normal to the sail surface. 

Furthermore, the magnitude of the Sun-sail vector, sr , is approximated by a constant Sun-Earth distance of 1 AU. 

The parameter   is the solar sail lightness number and can be defined as the ratio of the solar radiation pressure 

acceleration and the solar gravitational acceleration, or equivalently as the ratio of the system loading (i.e. the ratio of 

the spacecraft mass to the solar sail area, / sm A  ) and the critical sail loading, * 
 
1.53 g/m

2
 [2]: 

 
*




  (25) 

Eq. (25) shows that for a sail loading equal to the critical sail loading, the lightness number is unity, indicating 

that the solar radiation pressure acceleration is exactly equal to the solar gravitational acceleration. The equation 

furthermore shows that the sail lightness number is a function of the spacecraft mass. Since the mass of the hybrid 
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sail spacecraft decreases due to the consumption of propellant by the SEP system, the parameter   increases 

according to: 

 0

0

m

m
   (26) 

where the subscript „0‟ indicates the start of the mission.  

Due to the tilt of the Earth‟s rotational axis with respect to the ecliptic plane, the direction of the Sun-sail unit 

vector ˆ
sr  changes during the year. To model this variation, an Earth fixed rotating reference frame ( , , )E E EE x y z

 
as 

shown in Fig. 8 is used. Centered at the Earth with the ( , )E Ex y  plane in the equatorial plane and the 
Ez  axis along 

the rotational axis of the Earth, this reference frame rotates with the same angular velocity as the Earth in its orbit 

around the Sun, causing the unit vector ˆ
sr  to always be contained in the ( , )E Ex z  plane. The angle   describes the 

position of the Earth along its orbit (with  =0 at winter solstice), while the angle  is defined as the angle between 

ˆ
sr  and the equatorial plane and is therefore a function of  . This angle is at its maximum at winter solstice 

( (0) obli  ) and at its minimum at summer solstice ( ( ) obli    ) with 
obli  the obliquity of the ecliptic.  

 

Fig. 8 Definition of reference frame and parameters used to model the seasonal variation of ˆ
sr and to define 

the solar sail and SEP pitch and yaw angles. 
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The variation of   is in magnitude equal to the solar declination, but is opposite in sign: 

  1( ) sin sin cosobli    (27) 

yielding: 

 

cos

ˆ 0

sin

s





 
 

  
 
 

r  (28) 

The unit vector normal to the sail surface, n̂ , can be described using the same frame of reference, see Fig. 8. 

Using the solar sail pitch angle, 
s , and yaw angle, 

s , the unit vector n̂  is given by: 

 

sin cos

ˆ sin sin

cos

s s

s s

s

 

 



 
 

  
 
 

n  (29) 

Substituting Eq. (29) and the expressions for ˆ
sr , n̂  and   into Eq. (22) and rearranging gives: 

 

0

, 0 2

2

0

, 0 2

2

0

, 0 2

2

(cos sin cos

sin cos ) sin cos

(cos sin cos

sin cos ) sin sin

(cos sin cos

sin cos ) cos

E E

E E

E E

S

SEP x x s s

s

s s s

S

SEP y y s s

s

s s s

S

SEP z z s s

s

s s

m
a a

m r

m
a a

m r

m
a a

m r


   

   


   

   


   

  

 



 



 



 (30) 

with 
Exa , 

Eya  and 
Eza  the components of the acceleration required to maintain the displaced GEO as defined in Eq. 

(10) and (11) for the out-of-plane case and in Eq. (12) and (13) for the in-plane case. For instance, for the out-of-

plane case, 
E Ex ya a 0 and 3

Ez GEOa h r . In that case, the SEP system thus needs to counterbalance the in-plane 

component of the solar sail acceleration and needs to augment the out-of-plane solar sail acceleration to obtain the 

required out-of-plane acceleration.  

Inspecting Eq. (30) shows that for a given value for m  and   (i.e. for a particular instant of time), the 

minimization problem in Eq. (23) is merely a function of the solar sail pitch and yaw angles and therefore reduces to 

finding the optimal solar sail pitch and yaw angles that minimize the acceleration required from the SEP system: 
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  
 

 
,min ,max

* *

,

,

, arg min ( , )
s s s

s

s s SEP s sa
  

  

   
  
 

  (31) 

where the domain of 
s is defined later in the paper. The next two subsections solve this minimization problem for 

the out-of-plane and in-plane cases separately. 

A. Out-of-plane displaced GEO 

For the out-of-plane case, the solution to Eq. (31) can be found by setting the partial derivative of the SEP 

acceleration with respect to the sail pitch and yaw angles equal to zero: 

 0SEP SEP

s s

a a

 

 
 

 
 (32) 

Performing this analysis for the yaw angle yields: 

 
    2

1 1 2
ˆ ˆ ˆ ˆ4 cos

cos sin sin 0

SEP

s s s

s

s s

a
c c c 



  


    





n r n r
 (33) 

with 

 0

1 0 22 3
,   S

s GEO

m h
c c

m r r

 
   (34) 

For Eq. (33) to hold throughout the year and considering that 
1 0c   and ˆ ˆ( ) 0s n r  (to generate a solar sail 

acceleration) the optimal yaw angle equals: 

 *

s n   (35) 

with n  an integer equaling either 0 or 1. Substituting this value into Eq. (30) (with 0
E Ex ya a   and 

3

Ez GEOa h r ) shows that the 
Ey  component of the SEP thrust force is zero at all times. Furthermore, considering 

the fact that the solar sail is unable to generate a thrust component in the direction of the Sun and recalling that the 

Ex  axis points away from the Sun at all times, Eq. (35) can be reduced to: 

 * 0s   (36) 

A similar analysis can be performed for the partial derivative with respect to the sail pitch angle. Substituting 

* 0s s    gives the following condition: 
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2

1

2

1

cos
sin( )

sin( )

sin
0

2 cos( )

s

s

s

s

s

c

c

c

c


 

 



 

 


 


 (37) 

An analytical solution for the optimal pitch angle was not found from this expression, therefore Newton‟s method 

is once more applied to find *

s . To ensure that the optimal pitch angle does not generate a normal vector n̂  

pointing towards the Sun, bounds are imposed on the optimum pitch angle, as depicted in Fig. 9 for two epochs 

during the year. Furthermore, by requiring s  to be contained in the first two and last two quadrants for orbits 

displaced above and below the equatorial plane, respectively, 2 2/ 0SEP sa     is ensured such that the solution 

corresponds to a minimum rather than a maximum of  ,SEP s sa   .  

Note that Fig. 9 clearly illustrates that the out-of-plane displaced GEO as presented in this paper cannot be 

maintained throughout the year using only a solar sail. For instance, in summer the shaded area shows that the 

required thrust direction for a displaced GEO displaced above the equatorial plane (i.e. a thrust along the positive 
Ez  

axis) cannot be achieved by the solar sail. A similar reasoning holds for a GEO displaced below the equatorial plane 

in winter. Furthermore, in autumn and spring the required thrust direction for orbits displaced both above and below 

the equator lies on the edge of the shaded half-circle. The magnitude of the solar sail acceleration along the 
Ez  axis 

in that case becomes equal to zero as the Sun shines edge-on to the solar sail.  

 

Fig. 9 Definition of minimum and maximum solar sail pitch angles during the year. 
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Once the optimal sail pitch and yaw angles are found, the magnitude and direction of the acceleration required 

from the SEP system can be computed. Using Eq. (30), the pitch and yaw angles of the SEP thrust force, 
SEP  and 

SEP  respectively, can be computed, see Fig. 8: 

 

 

,

, ,

acos

atan2 ,

E

E E

SEP z

SEP

SEP

SEP SEP y SEP x

a

a

a a





 
  

 



 (38) 

as well as the magnitude of the required SEP thrust force:  

 
SEPT m a   (39) 

Previously it was already stated that , 0
ESEP ya   since * 0s  . Substituting , 0

ESEP ya   into Eq. (38) gives a 

constant SEP yaw angle of 
SEP n  , again with n  an integer equaling either 0 or 1.  

As noted before, the above holds for one instant in time, i.e. for a given value for m  and  . To find the variation 

of the controls, accelerations, thrust magnitude and mass as a function of time over multiple orbital periods, the 

displaced GEO is discretized into several nodes. The nodes are equally distributed over the orbit, leading to a 

constant time interval t  in between two consecutive nodes. At each node, i , the required SEP thrust magnitude can 

be approximated using Eq. (39) as ,i i SEP iT m a  . Then, assuming a constant thrust magnitude during the interval 

t , the mass at the end of the thi  interval can be approximated through the recurrence relation: 

 
1

0

i

i i

sp

T
m m t

I g
     (40) 

At each node the optimum solar sail angles (and subsequently the SEP acceleration, thrust angles and thrust 

magnitude) can be computed. When changing from one node to the successive node, the change in   can be 

computed using Eq. (27), while the mass at the start of the new interval can be computed using Eq. (40).  

The results after one year in a GEO displaced 35 km along the positive Ez  axis are shown in Fig. 10 and by the 

solid lines in Fig. 11. A time interval of 0.005t   days is adopted, which is considered to be small enough to allow 

for a fair comparison later in the paper with the analytical analysis for SEP control in Section III. Furthermore, an 

initial mass of 1500 kg (the smaller class of geostationary spacecraft [31]) and a specific impulse of 3200 s are 
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assumed. Finally, four different values for the sail lightness number are considered, 
0  0.01, 0.05, 0.1 and 0.2, 

where a value of 0.05 can be assumed reasonable for near-term systems [32].  

 

Fig. 10 Optimal solar sail (solid lines) and SEP (dashed lines) pitch angles for a 35 km out-of-plane displaced 

GEO maintained with hybrid sail control for different values of the solar sail lightness number 
0 . 

a) b)  

  

Fig. 11 35 km out-of-plane displaced GEO maintained with hybrid sail control for different values of the solar 

sail lightness number 
0 . Spacecraft mass (a) and required SEP thrust magnitude (b) assuming an initial 

mass of 1500 kg and a specific impulse of 3200 s. Solid lines indicate a year-long displacement along the 

positive Ez  axis. Dashed lines include a seasonal transfer between north and south displaced GEOs.  
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Fig. 10 shows that the optimal pitch angle of the solar sail decreases and the pitch angle of the SEP thruster 

increases for increasing values of 
0 , indicating a larger contribution from the sail to the required out-of-plane 

acceleration for larger values of 
0 . It also indicates a shift in the main task of the SEP thruster from providing the 

out-of-plane acceleration to compensating the in-plane component of the sail acceleration. Furthermore, some 

discontinuities can be observed in the profile of the SEP pitch angle for the largest value of 
0 . This large value for 

0  causes the component of the solar sail acceleration along the positive 
Ez  axis to become larger than the required 

out-of-plane acceleration. This requires the SEP thruster to thrust along the negative 
Ez  axis to counterbalance the 

access out-of-plane acceleration, hence the switch in the SEP pitch angle from / 2SEP   to
 

/ 2SEP  .  

In general, the larger the value for 
0  

the lower the demand on the SEP system, which is directly translated into a 

larger final mass after 1 year in orbit when using hybrid sail control instead of SEP control, see Fig. 11a. Already a 

solar sail with 
0  = 0.01 provides a gain in propellant mass of 29 kg. Further increasing 

0  results in savings of 94, 

130 and 161 kg for 
0  = 0.05, 0.1 and 0.2, respectively. 

Finally, considering the required thrust magnitude in Fig. 11b, another advantage of hybrid sails over pure SEP 

becomes evident. While the thrust level required for a 1500 kg spacecraft with SEP control is larger than currently 

achievable thrust levels of 0.2 N for this spacecraft size (e.g. EADS/Astrium RIT-XT), thrust levels smaller than 

0.2 N throughout the year can be observed for 0   0.1 and 0.2. Even for 0   0.05 the thrust level remains well 

under 0.2 N during winter, but it is higher during summer. This performance can be improved by transferring the 

spacecraft from a GEO displaced above the equatorial plane (north) in winter to an orbit displaced below the 

equatorial plane (south) in summer. Then, the performance of the sail is no longer limited by the obliquity of the 

ecliptic and can perform equally well in summer as it does in winter above the equatorial plane.  

When this so-called „seasonal transfer‟ is introduced in the model, results as presented by the dashed lines in Fig. 

11 are obtained. Note that the mission is assumed to always start in winter, i.e. above the equatorial plane, and that 

an instantaneous seasonal transfer is considered. As expected, massive improvements both in terms of propellant 

consumption and required thrust levels can be observed. The mass savings mentioned before are now increased to 

39, 129, 178 and 219 kg for 0   0.01, 0.05, 0.1 and 0.2, respectively. At the end of this paper, it will be shown that 
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transfers from above to below the equatorial plane and vice versa are possible and come at the cost of a negligible to 

modest SEP propellant consumption. 

While the results in Fig. 10 and Fig. 11 only hold for a mission lifetime of one year, it is interesting to investigate 

whether hybrid propulsion can enable out-of-plane displaced GEO missions lasting as long as current geostationary 

missions. Previous sections already showed that impulsive and SEP control are unable to do so. Extending the 

mission lifetime for hybrid sail control results in the graphs of Fig. 12. Note that all results neglect the effects of 

eclipses on the performance of the solar sail. For the (displaced) GEO, eclipses occur for a short period per day 

around the equinoxes. It is assumed that increased SEP thrust can compensate for the absence of thrust from the solar 

sail during these brief periods. 

Fig. 12 includes both cases of excluding and including the seasonal transfer and shows that the seasonal transfer 

can significantly increase the mission lifetime from a few months for the smaller values for 
0  up to a few years for 

the larger values for 
0 . Furthermore, comparing Fig. 12 with Fig. 6 and Fig. 7 shows a dramatic improvement of 

the lifetime for hybrid sail control compared to both impulsive and SEP control. For small displacement distances 

even lifetimes of 10 - 15 years come into reach and the lifetime for the larger displacements become reasonable. 

Again, comparing the lifetimes for a mass fraction of 0.5 and a specific impulse of 3200 s increases the lifetime for a 

35 km out-of-plane displaced orbit from 3.7 years for SEP control to 4.4 - 9.2 years (depending on the value chosen 

for 
0 ) when the seasonal transfer is not included and to 4.7 - 15 years when the transfer is included. Similarly, the 

lifetimes for a 150 km out-of-plane displaced orbit are increased from 0.9 years to 0.9 - 1.2 years (excluding transfer) 

and to 0.9 - 1.4 years (including transfer). 

B. Comparison with in-plane displaced GEO 

Although the analyses performed in Sections II and III showed that the out-of-plane displaced GEO outperforms 

the in-plane displaced GEO for the use of impulsive and SEP control, it is still worthwhile to investigate the 

performance of the in-plane displaced GEO for the use of hybrid sails. The reason for this is the fact that, despite the 

larger required acceleration to maintain the in-plane displaced GEO, the direction of this acceleration is much more 

favorable as it is approximately along the Sun-sail line in parts of the orbit.  
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 h  = 35 km h  = 75 km h  = 150 km 

0 0.01   

   

0 0.05   

   

0 0.1   

   

Fig. 12 Out-of-plane displaced GEOs maintained with hybrid sail control: mission time L  (a maximum of 15 

years is considered) as a function of the specific impulse spI  and the mass fraction 0/fm m , for different 

values of the displacement distance h  and the sail lightness number 0 . The solid surfaces exclude a 

seasonal transfer between north and south displaced GEOs. The transparent surfaces include this transfer. 

To investigate the performance of hybrid sails for the in-plane displaced GEO, the minimization problem in Eq. 

(31) needs to be solved with  2 2
* cos

Ex GEO Ea      ,  2 2
* sin

Ey GEO Ea       and 0
Eza  , where E  is the 

angular position in the displaced GEO, measured from the positive Ex  axis in counterclockwise direction. Applying 

the same approach as used in Section IV.A to solve for the optimum solar sail pitch and yaw angles would required a 

system of nonlinear equations to be solved using the Newton method rather than the single expression in Eq. (37). 
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Therefore, the minimization problem is solved using a sequential quadratic programming (SQP) method 

implemented in the MATLAB
®
 function fmincon [33]. This function allows to define the bounds for the sail pitch 

angle s  as shown in Fig. 9 and include a constraint to ensure ˆ ˆ( ) 0s n r . As for the out-of-plane case, the displaced 

GEO is discretized into nodes, again with a time interval of 0.005t   days, and at each node the minimization 

problem of Eq. (31) is solved. The results for a 35 km displaced orbit are provided in Fig. 13 and Fig. 14. Fig. 13 

clearly illustrates the influence of the changing direction of the Sun-sail line during the year and the sail attitude 

constraint that prevents the sail from generating an acceleration in the direction of the Sun. The latter requires the sail 

to be turned 180° every orbit and almost instantaneously during the equinoxes. However, as expected, during parts of 

the in-plane displaced orbit (around 0E  ) the sail normal is aligned with the required, radial acceleration, which 

significantly lowers the demand on the SEP thruster, see Fig. 14. This figure provides the acceleration required by 

the SEP thruster for both in-plane (solid lines) and out-of-plane (dashed lines) displaced GEOs for different values of 

the sail lightness number and during the solstices (Fig. 14a) and the equinoxes (Fig. 14b). The favourable Sun-sail 

line and required radial acceleration even causes the SEP acceleration for the in-plane case to be lower than for the 

out-of-plane case during the equinoxes and for 0  0.1. However, during the remainder of the orbit, the sail attitude 

constraint restricts the sail to such extent that the SEP thruster has to provide the greater part of the required 

acceleration, causing the out-of-plane case to outperform the in-plane case also for the use of hybrid sails.  

a) b) 

  

Fig. 13 Solar sail normal vector ( 0  0.1) for a 35 km in-plane displaced GEO during the solstices (a) and 

equinoxes (b).  
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a) b) 

  

Fig. 14 Required SEP acceleration for a 35 km in-plane (solid lines) and out-of-plane (dashed lines) displaced 

GEO for different values of the sail lightness number 0  and during the solstices (a) and the equinoxes (b). 

The shaded areas illustrate the contribution from the solar sail for 0  0.01. 

Since all types of propulsion considered show a much better performance for the out-of-plane displaced GEO 

than for the in-plane displaced GEO, the remainder of this paper, i.e. the mass budget analysis and the transfer 

trajectories will focus solely on the out-of-plane displaced GEO.  

V. Mass budget 

The results in Fig. 6, Fig. 7 and Fig. 12 provide the performance of impulsive, SEP and hybrid sail control for an 

out-of-plane displaced GEO in terms of propellant consumption. However, the goal of the mission is to maximize the 

lifetime of a spacecraft carrying a given payload. It should therefore be investigated whether the mass fractions and 

specific impulses of Fig. 6, Fig. 7 and Fig. 12 allow for any payload mass to be left at the lifetimes shown in those 

figures. For this, the spacecraft mass budget is investigated. However, due to its poor performance, impulsive control 

is discarded as a viable option to maintain the out-of-plane displaced GEO and this section will therefore only 

consider the mass budget for a hybrid sail and SEP propelled spacecraft. The corresponding mass budgets are based 

on what is proposed in Ref. [34]: 

 0 prop tank SEP P gimbal s paym m m m m m m m        (41) 
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The initial mass is broken down into seven elements. First, a propellant mass, 
propm , that follows from the initial 

and final spacecraft mass (see Eq. (19) and Eq. (40)), where the final mass is obtained after a certain lifetime L . 

Then, the mass of the tanks required to store the propellant, 0.1tank propm m
 
[35], and the mass of the SEP thruster, 

which is a function of the maximum power required by the SEP subsystem, 
,maxSEPP , which on its own is a function 

of the maximum thrust required during the mission, 
maxT : 

 

,max

max 0

,max
2

SEP SEP SEP

sp

SEP

SEP

m k P

T I g
P






 (42) 

with 
SEPk  0.02 kg/W [29] the specific performance of the SEP thruster and 

SEP  0.7 [36] its efficiency. 

Subsequently, in the case of SEP control a solar array with mass ,maxP SA SEPm k P  is assumed to provide electrical 

energy to the SEP system with 1 45SAk  kg/W the specific performance of the solar array [29]. In case of hybrid sail 

control, it is assumed that part of the sail is covered with thin film solar cells for this purpose. The required area 

covered with solar cells can be computed from the maximum power required by the SEP system: 

 
,max

,maxcos
SEP

TF SEP

TF

P
A

W



  (43) 

The efficiency of the thin film is set to a conservative value of TF  0.05 and ,maxSEP  represents the angle 

between the Sun-sail line and the solar sail normal vector when 
maxT T . From Eq. (43) the mass of the thin film 

P TF TFm A  can be computed with 
TF  100 g/m

2
 [37]. Note that the influence of the thin film solar cells on the 

performance of the sail is neglected in this paper. Then, the mass of a gimbal, 0.3gimbal SEPm m  [35], is taken into 

account to ensure that the solar sail and SEP thruster can steer independently of one another. Finally, the mass of the 

sail can be computed through 
s s sm A  with s  the mass per unit area of the solar sail and the area of the sail, sA , 

given through: 

 0 0

*s TF

m
A A




   (44) 
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For the sail loading s  a value of 5 g/m
2
 is assumed, which is optimistic, but considered reasonable for future 

solar sail missions as shown in recent studies [38-39]. Clearly, for an SEP controlled spacecraft, both 
gimbalm  and 

sm  

are set to zero.  

For a given mission lifetime and for a particular specific impulse, the only unknowns for computing the payload 

mass are the initial mass and the maximum SEP thrust required during the mission, maxT , which are related since the 

initial mass is bounded by 
maxT . For SEP control, this maximum thrust occurs at 

0t t  causing 
max 0T T . With the 

required acceleration to maintain the out-of-plane displaced GEO given for a particular displacement distance, the 

maximum initial mass can be computed through 
0,max 0m T a . However, for hybrid sail control, the maximum 

thrust does not necessarily occur at 
0t t , but can also occur in autumn (when the seasonal transfer is taken into 

account, as is done in this section) as shown in Fig. 11b. The resulting maximum initial masses for both SEP and 

hybrid sail control are provided in Fig. 15 as a function of the maximum thrust magnitude and for each of the 

displacement distances used so far and for different sail lightness numbers.  

 

Fig. 15 Maximum thrust magnitude 
maxT  as a function of the initial mass 

0m  for different values of the out-of-

plane displacement distance h  and the sail lightness number 
0  and for spI  3200 s. 

The figure shows that for SEP control and a maximum thrust magnitude of maxT  0.2 N (see Section IV.A), 

maximum initial masses of 1074, 501 and 251 kg are possible for displacement distances of 35, 75 and 150 km, 

respectively. These initial masses increase by a factor 1.05 to 2.7 for hybrid sail control, depending on the sail 

h  35 km h  75 km h  150 km 
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lightness number and the displacement distance. These higher initial masses show another major advantage of hybrid 

sail control over SEP control in addition to the propellant mass savings shown in Fig. 7 and Fig. 12. 

Using these initial masses and a specific impulse of 3200 s, the payload masses and lifetimes as depicted in Fig. 

16 can be obtained. Fig. 16 shows that in almost all cases hybrid sail control outperforms SEP control. The only 

exception occurs for the largest displacement considered in combination with the largest value for the sail lightness 

number, 
0  0.2. Fig. 16 furthermore shows that only hybrid sail control allows lifetimes equal to the lifetime of 

current geostationary spacecraft of 10 - 15 years, while still enabling a considerable payload to be taken onboard. For 

example, for a 35 km out-of-plane displaced orbit, a sail lightness number of 0.1 and an initial mass of 2193 kg, 

payload masses of 487 kg and 255 kg can be maintained in the displaced GEO for 10 and 15 years, respectively.  

a) b) 

h = 35 km h  = 150 km 

  

Fig. 16 Payload mass paym  as a function of the mission lifetime L  for a 35 km (a) and 150 km (b) out-of-plane 

displaced GEO, for different sail lightness numbers 0  and for spI  = 3200 s. 

The results in Fig. 16 furthermore suggest that an optimum lightness number exists. For instance, for the 35 km 

displaced GEO in Fig. 16a the results for 0  0.1 outperform the results for both smaller and larger values for 0 . 

Some details on this optimum lightness number are provided in Fig. 17. This figure shows the increase in sail mass 

and the gain in initial, propellant, tank and power source mass that are achieved by increasing the value for 0  for a 

35 km out-of-plane displaced GEO. The difference between the two lines is thus the net increase in payload mass. 

The figure clearly shows that for increasing 0  beyond a certain value, the gain in initial, propellant, tank and power 
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source mass no longer outweighs the required increased sail mass and increasing 
0  even further would only result 

in a net decrease of the payload mass. The figure furthermore shows that the optimum value for 
0 depends on the 

mission lifetime, which is introduced through the dependency of propm  and tankm  on both the mission lifetime and 

the sail lightness number. Note that SEPm  and gimbalm  are independent of the lightness number and mission lifetime 

and are therefore of no influence on the graphs in Fig. 17.  

 

Fig. 17 Increase in sail mass and gain in initial, propellant, tank and power source mass due to increase in sail 

lightness number 0  for a 35 km out-of-plane displaced GEO.  

Note that the analysis in this section assumes the use of one SEP thruster. However, multiple SEP thrusters could 

be clustered to provide a larger maximum thrust and with that a larger initial mass. Inspecting the separate mass 

components in Eq. (41) shows that all components scale linearly with the maximum thrust, including the payload 

mass. Therefore, by clustering for instance three SEP thrusters to obtain a maximum thrust of 0.6 N, the previously 

mentioned result for a 35 km out-of-plane displaced orbit and a sail lightness number of 0.1 can be increased to an 

initial mass of 6579 kg and payload masses of 1461 kg and 765 kg to be maintained in the displaced GEO for 10 and 

15 years, respectively.  

Although the performance for a 35 km out-of-plane displaced orbit is highly promising, the performance of the 

higher displaced orbits is not, see Fig. 16b. The lifetime decreases drastically to approximately 0.5 year. Despite this 

short lifetime an interesting application exists for the 150 km out-of-plane displaced GEO, namely to provide 

temporary displacements. Then, the displaced GEO is only maintained for a relatively short period of time to provide 

services when needed and is transferred into a Keplerian parking orbit when inoperative to save propellant mass. For 
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such short durations, the 150 km displaced GEO can transform its rather short lifetime into multiple smaller mission 

segments extended over a much longer lifetime. To show the feasibility of this concept, the next section will 

investigate the trajectory that is required to transfer the spacecraft from and to the Keplerian parking orbit.  

VI. Transfer orbits 

In the previous section, two types of transfers were mentioned to improve the performance of hybrid sail control 

for maintaining the out-of-plane displaced GEO. This section will investigate these transfers. Both types of transfers 

are assumed to be performed using only the onboard SEP system and will be optimized for the propellant 

consumption. This implies solving an optimal control problem for which the cost function to be minimized is set to: 

 fJ m   (45) 

To solve the optimal control problem the open source tool PSOPT is used [40-41]. PSOPT implements a direct 

pseudospectral method to solve the optimal control problem. By discretizing the time interval into a finite number of 

nodes, the infinite dimensional optimal control problem is transformed into a finite dimension non-linear 

programming (NLP) problem. Pseudospectral methods use Legendre or Chebyshev polynomials to approximate and 

interpolate the time dependent variables at the nodes. The advantage of using pseudospectral methods is that the 

derivatives of the state functions at the nodes are computed by matrix multiplication only and that any integral 

associated with the problem is approximated using well known Gauss quadrature rules.  

A. Seasonal transfer 

The obliquity of the ecliptic causes hybrid sail control for out-of-plane displaced GEOs to perform best when a 

spacecraft is displaced above the equatorial plane (north) in winter and below the equatorial plane (south) in summer. 

To accomplish this, the spacecraft will have to be transferred from above the equatorial plane to below the equatorial 

plane and vice versa twice per year: once in spring (north to south) and once in autumn (south to north). This 

seasonal transfer is described using a spherical reference frame ( , , )C r  
 
centered at the Earth, see Fig. 18. The in-

plane angle   is measured in counter clockwise direction from the Cx  axis that coincides with the start of the 

transfer (i.e. for 0t  , 0  ) and the out-of-plane angle   is measured from the ( , )C Cx y  plane that is parallel to 

the equatorial plane.  
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Fig. 18 Definition of spherical reference frame and control vector to describe the seasonal transfer.  

For an SEP controlled spacecraft the state vector at any point in the trajectory then becomes: 

 
T

rr V V V m     x  (46) 

With the transfer starting and ending in a displaced GEO the initial, 
0x , and final, 

fx , state vectors are given by: 

 
0 0 0 00 0 cos 0 ][

[ 0 cos 0   ]

T

GEO GEO

T
f GEO f f GEO f

r r m

r r

  

   



 

x

x
 (47) 

with the final mass free. To ensure that the longitude of the spacecraft in the displaced GEO is unchanged after the 

transfer, the final in-plane angle f is restricted to: 

 f GEO ft   (48) 

Finally, 1

0 0sin ( / )GEOh r   and 
1sin ( / )f f GEOh r  , where correct signs for 

0h  and fh  will ensure correct 

signs for 0  and f .  

Using a two-body model, the equations that describe the motion of the spacecraft in the transfer equal: 
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with rT T T 
   u  the control vector consisting of the Cartesian components of the SEP thrust magnitude. This 

requires the following path constraint: 

 2 2 2

maxrT T T T T      (50) 

with maxT  the maximum allowable SEP thrust magnitude.  

PSOPT requires an initial guess to initialize the optimization. To obtain this initial guess, a shaped based 

approach is used in which the shape of the transfer is fixed and the required controls to perform that transfer are 

sought for. For this, the transfer is considered in a rotating reference frame that rotates with respect to an inertial 

frame at constant angular velocity equal to the angular velocity of the (displaced) GEO. Within this rotating frame, 

spacecraft in the north and south displaced GEOs are stationary. Subsequently, the transfer between the orbits is 

assumed to be the shortest path possible in this reference frame and a parabolic velocity profile is adopted to ensure 

zero velocities at the start and end of the transfer. 

The results of the optimization in PSOPT are given in the first row (for d  0) of Table 2 with a selection of the 

corresponding thrust profiles in Fig. 19. A maximum transfer time of one day is assumed to limit a potential 

disruption in the downlink to Earth during the transfer. Furthermore, to consider the worst case scenario, the 

maximum masses (i.e. for 0  0.2) corresponding to a maximum in-orbit thrust magnitude of 0.2 N as shown in 

Fig. 15 are used for the initial mass 0m . Finally, maxT  is set to 0.2 N and a specific impulse of 3200 s is employed. 

The table shows a relatively worse performance for smaller displacements which can be explained by the relatively 

larger initial mass. The first row in Table 2 furthermore shows that almost negligible amounts of propellant are 

needed to perform the seasonal transfer.  

Table 2 Required propellant mass in grams for optimized seasonal transfer including a constraint on the 

approach distance to the GEO, d . 

 
 0h , km 

0m , kg
 

propm , g 
 

 ±35
 

±75
 

±150
 

0m , kg  2912 1020 436 

d , km 

0 2.6 0.96 0.66 

5 243.0 52.6 20.1 

10 Infeasible 123.3 42.1 

20 Infeasible Infeasible 96.0 

35 Infeasible Infeasible 227.4 
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Fig. 19 Thrust profile for optimized seasonal transfer with d  0. 

The reason for these small amounts of propellant can be found when considering what happens when the 

propulsion is switched off in the displaced GEO. The spacecraft will fall into a Keplerian orbit for which the 

inclination is equal to  , the eccentricity is close 0 and the semi-major axis is close to the GEO radius [2]. The 

Keplerian orbit thus almost coincides with the displaced GEO on the opposite side of the equatorial plane and only a 

small thrust is needed to overcome any remaining offset. This description of the transfer also implies that the transfer 

closely passes the GEO and could therefore impose collision risk to GEO spacecraft. In order to cope with this, the 

following path constraint is added to the optimal control problem:  

 
2 22 cosGEO GEOr r r r d      (51) 

which ensures that the distance between the transfer and the GEO is always larger than the value assigned to d .  

Including this constraint provides the other results in Table 2, where the propellant mass is given for different values 

of d . The table shows that the constraint has a rather large impact on the propellant consumption, especially for the 

smaller displacements. However, the increase in propellant mass still outweighs the savings that can be obtained 

from applying the transfer to increase the performance of the out-of-plane displaced GEO during the in-orbit phase.  

B. Temporary displacement  

For the temporary displacement, the spacecraft is transferred into an out-of-plane displaced GEO for a relatively 

short period of time to provide services and is transferred back into a Keplerian parking orbit when the services are 

no longer needed in order to save propellant mass. This parking orbit and the transfer that are involved in this 

concept are illustrated in Fig. 20. The parking orbit thus lies in the equatorial plane and inside the GEO, where the 
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distance between the parking orbit and the GEO equals the absolute value of the displacement distance. In this way, 

the parking orbit is as close to the displaced GEO as possible without interfering with either the GEO or the 

displaced GEO. 

The investigation of the transfer between the parking orbit and the displaced GEO (and vice versa) is very similar 

to the seasonal transfer. The definition of the state and control variables is the same as are the equations of motion. 

Only the initial and final states differ. When the transfer from the parking orbit to the displaced GEO is considered, 

these become: 

 0 0[ 0  0  0 ( ) 0 ]T

GEO GEOr h r h m  x  (52) 

 [       0 cos 0   ]T

f GEO f GEO fr r    x  (53) 

with the final mass and final in-plane angle free. Phasing between the parking orbit and the out-of-plane displaced 

GEO will have to ensure that the spacecraft is inserted into the displaced GEO at the correct longitude. Note that 

when the transfer from the displaced orbit to the parking orbit is considered, the initial condition equals Eq. (53) and 

the final condition becomes Eq. (52). 

In addition to the problem definition, also the optimization of the transfer is similar to the optimization of the 

seasonal transfer. The same method to generate the initial guess and the same objective function and path constraints 

can be applied. The results of the optimization are shown in Table 3 and Fig. 21, where again a minimum distance 

from the GEO is taken into account. Although the required propellant mass is larger than for the seasonal transfer, it 

still requires only modest propellant budgets, and improvements could possibly be made by employing the solar sail 

in case hybrid sail control is used to maintain the out-of-plane displaced GEO.  

 

Fig. 20 Definition of parking orbit for temporary displacement.  

Displaced GEO 
Cz  

Cy  

Cx  

h  Parking orbit 

h  

GEO 
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Table 3 Required propellant mass in grams for temporary displacement transfer including a constraint on the 

approach distance to the GEO, d .  

  Parking orbit to displaced GEO  Displaced GEO to parking orbit 

  fh , km
 

 
0h , km

 
  ±35 ±75 ±150  ±35 ±75 ±150 

0m , kg  2912 1020 436  2912 1020 436 

d , km
 

0 277.8 204.0 173.7  292.0 208.9 176.1 
5 287.2 206.7 174.1  297.3 209.9 176.2 

10 302.3 210.9 176.1  304.3 214.1 177.3 

20 Infeasible 221.4 179.5  Infeasible 224.6 181.1 

35 Infeasible 247.2 185.7  Infeasible 249.9 187.2 

 

a) b) 

  

Fig. 21 a) Temporary displacement transfer from a 150 km out-of-plane displaced GEO. b) Thrust profile. 

VII. Conclusions 

In this paper displaced geostationary orbits (GEOs) have been proposed to increase the capacity of the GEO at 

longitude slots where it is starting to become congested. By levitating the GEO above or below the equatorial plane 

or by displacing it in the equatorial plane, new slots arise, but at the cost of a continuously required control. Three 

types of control have been suggested: impulsive, solar electric propulsion (SEP) and hybrid sail control. For all three 

types of control it was shown that, for similar displacements, the out-of-plane displaced GEO outperforms the in-

plane displaced GEO in terms of V  or required SEP acceleration and with that in terms of propellant mass or 

mission lifetime. Due to a penalty on the ΔV for using pulsed rather than continuous control to maintain an out-of-
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plane displaced GEO and the low specific impulse of a chemical propulsion system, the performance of impulsive 

control was found to be very poor. Even small displacements of 35 km, the minimum to rise above the geostationary 

station keeping box, could not be maintained for longer than a few months. Much better performance of a few 

months to a few years in a 150 km and 35 km out-of-plane displaced orbit, respectively, could be observed for the 

use of SEP control. However, investigating the spacecraft mass budget showed that only for small displacements 

reasonable payload masses of a few hundred kilograms could be maintained for a few years. By adding a solar sail to 

the SEP system, thereby creating hybrid sail control, the demand on the SEP system could be lowered while enabling 

a mission that is impossible using only a solar sail due to the obliquity of the ecliptic and the inability of the sail to 

produce a thrust force in the direction of the Sun. The hybrid control case has been optimized for the SEP propellant 

consumption, thereby maximizing the mission lifetime and payload mass. A seasonal transfer could be performed 

between orbits displaced above and below the equatorial plane to maximize the sail‟s performance and further 

optimize these results. Optimizing this transfer for the SEP propellant consumption showed that this transfer comes 

almost for free or at the cost of a modest propellant budget, depending on the allowed approach distance to the GEO. 

Employing the seasonal transfer provided lifetimes of 10 - 15 years (equal to current geostationary missions) for a 35 

km out-of-plane displaced orbit and for considerable payload masses of 255 - 487 kg, assuming the use of one SEP 

thruster. These payload masses could be increased linearly by increasing the number of SEP thrusters. The higher 

out-of-plane displaced orbits appeared to be especially useful for temporary displacements in which the spacecraft is 

only put into the displaced orbit for relatively short periods of time to provide coverage when needed. When not 

operational, the spacecraft is transferred into a Keplerian parking orbit to save propellant mass. Optimizing this 

transfer showed that again only a modest propellant budget is required. 
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