535 research outputs found

    Detecting malicious data injections in event detection wireless sensor networks

    Get PDF

    Spectral Variability from the Patchy Atmospheres of T and Y Dwarfs

    Full text link
    Brown dwarfs of a variety of spectral types have been observed to be photometrically variable. Previous studies have focused on objects at the L/T transition, where the iron and silicate clouds in L dwarfs break up or dissipate. However, objects outside of this transitional effective temperature regime also exhibit variability. Here, we present models for mid-late T dwarfs and Y dwarfs. We present models that include patchy salt and sulfide clouds as well as water clouds for the Y dwarfs. We find that for objects over 375 K, patchy cloud opacity would generate the largest amplitude variability within near-infrared spectral windows. For objects under 375 K, water clouds also become important and generate larger amplitude variability in the mid-infrared. We also present models in which we perturb the temperature structure at different pressure levels of the atmosphere to simulate hot spots. These models show the most variability in the absorption features between spectral windows. The variability is strongest at wavelengths that probe pressure levels at which the heating is the strongest. The most illustrative types of observations for understanding the physical processes underlying brown dwarf variability are simultaneous, multi-wavelength observations that probe both inside and outside of molecular absorption features.Comment: 6 pages, 5 figures, Accepted for publication in ApJ Letter

    Water Clouds in Y Dwarfs and Exoplanets

    Full text link
    The formation of clouds affects brown dwarf and planetary atmospheres of nearly all effective temperatures. Iron and silicate condense in L dwarf atmospheres and dissipate at the L/T transition. Minor species such as sulfides and salts condense in mid-late T dwarfs. For brown dwarfs below Teff=450 K, water condenses in the upper atmosphere to form ice clouds. Currently over a dozen objects in this temperature range have been discovered, and few previous theoretical studies have addressed the effect of water clouds on brown dwarf or exoplanetary spectra. Here we present a new grid of models that include the effect of water cloud opacity. We find that they become optically thick in objects below Teff=350-375 K. Unlike refractory cloud materials, water ice particles are significantly non-gray absorbers; they predominantly scatter at optical wavelengths through J band and absorb in the infrared with prominent features, the strongest of which is at 2.8 microns. H2O, NH3, CH4, and H2 CIA are dominant opacity sources; less abundant species such as may also be detectable, including the alkalis, H2S, and PH3. PH3, which has been detected in Jupiter, is expected to have a strong signature in the mid-infrared at 4.3 microns in Y dwarfs around Teff=450 K; if disequilibrium chemistry increases the abundance of PH3, it may be detectable over a wider effective temperature range than models predict. We show results incorporating disequilibrium nitrogen and carbon chemistry and predict signatures of low gravity in planetary- mass objects. Lastly, we make predictions for the observability of Y dwarfs and planets with existing and future instruments including the James Webb Space Telescope and Gemini Planet Imager.Comment: 23 pages, 20 figures, Revised for Ap

    Magnetic properties of nanostructured systems based on TbFe2

    Get PDF
    The aim of this work is to study the magnetic properties of annealed [Fe3Ga/TbFe2]n heterostructures grown by sputtering at room temperature. The interest of investigating multilayers comprised of TbFe2 and Fe3Ga is their complementary properties in terms of coercivity and magnetostriction. We have studied the thickness combination which optimizes the magnetic and magnetostrictive properties of the annealed multilayers. The crystallization of the Laves phase upon the thermal treatment in heterostructures with thick TbFe2 layers promotes the increase of the coercivity. This crystallization seems to be prevented by the low mechanical stiffness of the Fe3Ga. [Fe3Ga/TbFe2]n heterostructures show promising characteristics, λ of 340 ppm and a HC of 220 Oe, for the development of new magnetostrictive devices

    Determining Resilience Gains from Anomaly Detection for Event Integrity in Wireless Sensor Networks

    Get PDF
    Measurements collected in a wireless sensor network (WSN) can be maliciously compromised through several attacks, but anomaly detection algorithms may provide resilience by detecting inconsistencies in the data. Anomaly detection can identify severe threats to WSN applications, provided that there is a sufficient amount of genuine information. This article presents a novel method to calculate an assurance measure for the network by estimating the maximum number of malicious measurements that can be tolerated. In previous work, the resilience of anomaly detection to malicious measurements has been tested only against arbitrary attacks, which are not necessarily sophisticated. The novel method presented here is based on an optimization algorithm, which maximizes the attack’s chance of staying undetected while causing damage to the application, thus seeking the worst-case scenario for the anomaly detection algorithm. The algorithm is tested on a wildfire monitoring WSN to estimate the benefits of anomaly detection on the system’s resilience. The algorithm also returns the measurements that the attacker needs to synthesize, which are studied to highlight the weak spots of anomaly detection. Finally, this article presents a novel methodology that takes in input the degree of resilience required and automatically designs the deployment that satisfies such a requirement

    Retrieval of atmospheric properties of cloudy L dwarfs

    Get PDF
    © 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.We present the first results from applying the spectral inversion technique in the cloudy L dwarf regime. Our new framework provides a flexible approach to modelling cloud opacity which can be built incrementally as the data requires, and improves upon previous retrieval experiments in the brown dwarf regime by allowing for scattering in two stream radiative transfer. Our first application of the tool to two mid-L dwarfs is able to reproduce their near-infrared spectra far more closely than grid models. Our retrieved thermal, chemical, and cloud profiles allow us to estimate Teff=179625+23T_{\rm eff} = 1796^{+23}_{-25} K and logg=5.210.08+0.05\log g = 5.21^{+0.05}_{-0.08} for 2MASS J05002100+0330501 and for 2MASSW J2224438-015852 we find Teff=172319+18T_{\rm eff} = 1723^{+18}_{-19} K and logg=5.310.08+0.04\log g = 5.31^{+0.04}_{-0.08}, in close agreement with previous empirical estimates. Our best model for both objects includes an optically thick cloud deck which passes τcloud1\tau_{cloud} \geq 1 (looking down) at a pressure of around 5 bar. The temperature at this pressure is too high for silicate species to condense, and we argue that corundum and/or iron clouds are responsible for this cloud opacity. Our retrieved profiles are cooler at depth, and warmer at altitude than the forward grid models that we compare, and we argue that some form of heating mechanism may be at work in the upper atmospheres of these L dwarfs. We also identify anomalously high CO abundance in both targets, which does not correlate with the warmth of our upper atmospheres or our choice of cloud model, and find similarly anomalous alkali abundance for one of our targets. These anomalies may reflect unrecognised shortcomings in our retrieval model, or inaccuracies in our gas phase opacities.Peer reviewedFinal Accepted Versio

    Forward and Inverse Modeling of the Emission and Transmission Spectrum of GJ 436b: Investigating Metal Enrichment, Tidal Heating, and Clouds

    Get PDF
    The Neptune-mass GJ 436b is one of the most-studied transiting exoplanets with repeated measurements of both its thermal emission and transmission spectra. We build on previous studies to answer outstanding questions about this planet, including its potentially high metallicity and tidal heating of its interior. We present new observations of GJ 436b's thermal emission at 3.6 and 4.5 micron, which reduce uncertainties in estimates of GJ 436b's flux at those wavelengths and demonstrate consistency between Spitzer observations spanning more than 7 years. We analyze the Spitzer thermal emission photometry and Hubble WFC3 transmission spectrum in tandem. We use a powerful dual-pronged modeling approach, comparing these data to both self-consistent and retrieval models. We vary the metallicity, intrinsic luminosity from tidal heating, disequilibrium chemistry, and heat redistribution. We also study the effect of clouds and photochemical hazes on the spectra, but do not find strong evidence for either. The self-consistent and retrieval modeling combine to suggest that GJ 436b has a high atmospheric metallicity, with best fits at or above several hundred times solar metallicity, tidal heating warming its interior with best-fit intrinsic effective effective temperatures around 300--350 K, and disequilibrium chemistry. High metal-enrichments (>600x solar) can only occur from the accretion of rocky, rather than icy, material. Assuming Tint~300--350 K, we find that Q'~2x10^5--10^6, larger than Neptune's Q', and implying a long tidal circularization timescale for the planet's orbit. We suggest that Neptune-mass planets may be a more diverse class than previously imagined, with metal-enhancements potentially spanning several orders of magnitude, to perhaps over 1000x solar metallicity. High fidelity observations with instruments like JWST will be critical for characterizing this diversity.Comment: 15 pages, 18 figures. Revised for publication in Ap

    A hybrid threat model for smart systems

    Get PDF
    Cyber-physical systems and their smart components have a pervasive presence in all our daily activities. Unfortunately, identifying the potential threats and issues in these systems and selecting enough protection is challenging given that such environments combine human, physical and cyber aspects to the system design and implementation. Current threat models and analysis do not take into consideration all three aspects of the analyzed system, how they can introduce new vulnerabilities or protection measures to each other. In this work, we introduce a novel threat model for cyber-physical systems that combines the cyber, physical, and human aspects. Our model represents the system’s components relations and security properties by taking into consideration these three aspects. Together with the threat model we also propose a threat analysis method that allows understanding the security state of the system’s components. The threat model and the threat analysis have been implemented into an automatic tool, called TAMELESS, that automatically analyzes threats to the system, verifies its security properties, and generates a graphical representation, useful for security architects to identify the proper prevention/mitigation solutions. We show and prove the use of our threat model and analysis with three cases studies from different sector

    Junctional adhesion molecule-C regulates vascular endothelial permeability by modulating VE-cadherin–mediated cell–cell contacts

    Get PDF
    We recently reported that junctional adhesion molecule (JAM)-C plays a role in leukocyte transendothelial migration. Here, the role of JAM-C in vascular permeability was investigated in vitro and in vivo. As opposed to macrovascular endothelial cells that constitutively expressed JAM-C in cell–cell contacts, in quiescent microvascular endothelial cells, JAM-C localized mainly intracellularly, and was recruited to junctions upon short-term stimulation with vascular endothelial growth factor (VEGF) or histamine. Strikingly, disruption of JAM-C function decreased basal permeability and prevented the VEGF- and histamine-induced increases in human dermal microvascular endothelial cell permeability in vitro and skin permeability in mice. Permeability increases are essential in angiogenesis, and JAM-C blockade reduced hyperpermeability and neovascularization in hypoxia-induced retinal angiogenesis in mice. The underlying mechanisms of the JAM-C–mediated increase in endothelial permeability were studied. JAM-C was essential for the regulation of endothelial actomyosin, as revealed by decreased F-actin, reduced myosin light chain phosphorylation, and actin stress fiber formation due to JAM-C knockdown. Moreover, the loss of JAM-C expression resulted in stabilization of VE-cadherin–mediated interendothelial adhesion in a manner dependent on the small GTPase Rap1. Together, through modulation of endothelial contractility and VE-cadherin–mediated adhesion, JAM-C helps to regulate vascular permeability and pathologic angiogenesis
    corecore