173 research outputs found

    AMYAND'S HERNIA, AN UNKNOWN ENTITY THAT MAY CAUSE SURGEONS DIFFICULTY: OUR EXPERIENCE AND LITERATURE REVIEW

    Get PDF
    Amyand's hernia is an inguinal hernia, containing the appendix within the hernial sac. Claudius Amyand described the first clinical case in 1735. Despite the high incidence of inguinal canal hernia disease in the population with approximately 20 milion patients that undergo hernia repair annually, Amyand's hernia is a rare clinical conditions. It is characterized by an incidence of 1 % (0,19-1.7) and in 0,13 % of all cases, the appendix is inflamed. In this article, we will present our experience related to the treatment of a complicated Amyand's hernia, occasionally found during an emergency surgery for the repair of an incarcerated inguinal hernia. In addition, we will conduct a medical review of this pathology that often represents an unpleasant surprise for the surgeon

    Design of the ELIMAIA ion collection system

    Get PDF
    A system of permanent magnet quadrupoles (PMQs) is going to be realized byINFNLNS to be used as a collection system for the injection of laser driven ionbeams up to 60 AMeV in an energy selector based on four resistive dipoles. Thissystem is the first element of the ELIMED (ELI-Beamlines MEDical andMultidisciplinary applications) beam transport, dosimetry and irradiation linethat will be developed by INFN-LNS (It) and installed at the ELI-Beamlinesfacility in Prague (Cz). ELIMED will be the first users open transportbeam-line where a controlled laser-driven ion beam will be used formultidisciplinary researches. The definition of well specified characteristics,both in terms of performances and field quality, of the magnetic lenses iscrucial for the system realization, for the accurate study of the beam dynamicsand for the proper matching with the magnetic selection system which will bedesigned in the next months. Here, we report the design of the collection system and the adopted solutionsin order to realize a robust system form the magnetic point of view. Moreover,the first preliminary transport simulations are also described

    Time of Flight based diagnostics for high energy laser driven ion beams

    Get PDF
    Nowadays the innovative high power laser-based ion acceleration technique is one of the most interesting challenges in particle acceleration field, showing attractive characteristics for future multidisciplinary applications, including medical ones. Nevertheless, peculiarities of optically accelerated ion beams make mandatory the development of proper transport, selection and diagnostics devices in order to deliver stable and controlled ion beams for multidisciplinary applications. This is the main purpose of the ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) beamline that will be realized and installed within 2018 at the ELI-Beamlines research center in the Czech Republic, where laser driven high energy ions, up to 60 MeV/n, will be available for users. In particular, a crucial role will be played by the on-line diagnostics system, recently developed in collaboration with INFN-LNS (Italy), consisting of TOF detectors, placed along the beamline (at different detection distances) to provide online monitoring of key characteristics of delivered beams, such as energy, fluence and ion species. In this contribution an overview on the ELIMAIA available ion diagnostics will be briefly given along with the preliminary results obtained during a test performed with high energy laser-driven proton beams accelerated at the VULCAN PW-laser available at RAL facility (U.K.)

    status of the elimed multidisciplinary and medical beam line at eli beamlines

    Get PDF
    Nowadays, one of the biggest challenges consists in using high intensity laser-target interaction to generate high-energy ions for medical purposes, eventually replacing the old paradigm of acceleration characterized by huge and complex machines. In order to investigate the feasibility of using laser-driven ion beams for multidisciplinary application, a dedicated beam transport line will be installed at the ELI-Beamlines facility in Prague (CZ), as a part of the User-oriented ELIMAIA beam-line dedicated to ion acceleration and their potential applications. The beam-line section dedicated to transport and dosimetric endpoints is called ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) and will be developed by the INFN-LNS

    Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation

    Get PDF
    Acetylcholine (ACh) has been shown to modulate neuronal differentiation during early development. Both muscarinic and nicotinic acetylcholine receptors (AChRs) regulate a wide variety of physiological responses, including apoptosis, cellular proliferation and neuronal differentiation. However, the intracellular mechanisms underlying these effects of AChR signaling are not fully understood. It is known that activation of AChRs increase cellular proliferation and neurogenesis and that regulation of intracellular calcium through AChRs may underlie the many functions of ACh. Intriguingly, activation of diverse signaling molecules such as Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, protein kinase C and c-Src is modulated by AChRs. Here we discuss the roles of ACh in neuronal differentiation, cell proliferation and apoptosis. We also discuss the pathways involved in these processes, as well as the effects of novel endogenous AChRs agonists and strategies to enhance neuronal-differentiation of stem and neural progenitor cells. Further understanding of the intracellular mechanisms underlying AChR signaling may provide insights for novel therapeutic strategies, as abnormal AChR activity is present in many diseases

    Impact of intracellular ion channels on cancer development and progression

    Get PDF
    • …
    corecore