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a b s t r a c t 
A growing interest of the scientific community towards multidisciplinary applications of laser-driven 

beams has led to the development of several projects aiming to demonstrate the possible use of these 

beams for therapeutic purposes. Nevertheless, laser-accelerated particles differ from the conventional 

beams typically used for multiscipilinary and medical applications, due to the wide energy spread, the 

angular divergence and the extremely intense pulses. The peculiarities of optically accelerated beams led 

to develop new strategies and advanced techniques for transport, diagnostics and dosimetry of the 

accelerated particles. In this framework, the realization of the ELIMED (ELI-Beamlines MEDical and 

multidisciplinary applications) beamline, developed by INFN-LNS (Catania, Italy) and that will be 

installed in 2017 as a part of the ELIMAIA beamline at the ELI-Beamlines (Extreme Light Infrastructure 

Beamlines) facility in Prague, has the aim to investigate the feasibility of using laser-driven ion beams for 

multidisciplinary applications. In this contribution, an overview of the beamline along with a detailed 

description of the main transport elements as well as the detectors composing the final section of the 

beamline will be presented. 

& 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Over the last decades, charged particle acceleration using ultraintense and ultra-short laser pulses has been one of the most attractive topics in the 

relativistic laser-plasma interaction research [1,2]. 

Since the first experiments on laser-matter interaction, wide theoretical and experimental progresses have been carried out, confirming 

the possibility to accelerate multi-MeV ion beams from the interaction 

of high-intensity laser pulses (from 1018 to 1020 W/cm2) on thin solid 

targets [3–5]. So far different acceleration regimes [6–11], such as the 

Target Normal Sheath Acceleration (TNSA) [12–14], the Radiation Pressure Acceleration (RPA) [15–17] and the Break-Out Afterburner (BOA) 

[18], have been studied and several experimental results, obtained 

mainly within the TNSA regime, have been reported in the literature 

[12–14]. Some of the peculiarities of the accelerated protons might be 

of interest for different kind of applications, including the medical 

ones. In particular, high fluxes per shot a broader energy spectra, if 

well controlled, could provide an alternative and powerful tool for 

dose delivery, representing a new opportunity for the therapeutic 

purposes of charged particles. Indeed, one of the most challenging 

ideas driving recent activities consists on using laser-target interaction 

as a source of high-energy ions for possible future medical applications [20,21]. Nevertheless, despite the great enthusiasm driven by the 

recent results, before clinical application of laser-accelerated particles 

several tasks need to be fulfilled. Several international collaborations 

and experiments have been launched in the last years aiming to 

explore the feasibility of using laser-driven sources for potential 

medical applications and many research centers have been involved in 

the investigation of laser driven therapy and applications, as for 
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instance the Queens University Belfast Consortium, the OncoRay 

National Center for Radiation Research in Oncology, Dresden, The 



Munich Centre for Advanced Photonics (MAP), the ion Acceleration 

Program at BNL ATF and UCLA, a more complete and extensive review 

on these research projects along with the specifications of the laser 

systems and technical approaches involved can be found in an ICFA 

Publication [22]. In this framework, a collaboration between the INFNLNS (National Institute for Nuclear Physics – Laboratori Nazionali del 

Sud, Catania, Italy) and the ASCR-FZU (Institute of Physics of the Czech 

Academy of Science), in charge for the ELI-Beamlines facility implementation, has been established in 2011. ELI-Beamlines started in 

2012 the realization of a high-power laser facility, where one of the 

experimental hall, named ELIMAIA (ELI Multidisciplinary Applications 

of laser-Ion Acceleration) will be dedicated to the multidisciplinary 

experiments with laser-accelerated protons and ions. ELIMED (ELIBeamlines MEDical and multidisciplinary applications) represents the 

beam transport and dosimetric section of the ELIMAIA room and will 

be designed, realized and installed at ELI-Beamlines by LNS-INFN 

within the end of 2017. Its purpose is to provide to the interested 

scientific community a user-oriented facility where accurate dosimetric measurements and radiobiology experiments can be performed [23]. 

In the following sections, a description of the ELIMED beamlines, with a detailed discussion of the transport elements as well 

as of the detectors, will be presented. 

2. The ELIMED transport beam line 

To fulfil the mentioned goals and deliver the accelerated beams 

with the requirements necessary for multidisciplinary applications, 

the following issues have to be taken into account designing the 

ELIMED beamline: to make the optically accelerated beams suitable 

for multidisciplinary applications and to find innovative solutions for 

the detectors development for laser-driven ions. 

The first goal will be achieved studying and designing specific 

transport elements that allow collecting and selecting the accelerated 

particles. The second one will be achieved developing new solutions 

to perform accurate dose and energy spectra measurements and, 

consequently, well-controlled sample irradiations. According to these 

requirements, three main sections are foreseen for the ELIMED 

beamline: the first and the second one, in vacuum, composed by 

magnetic elements for the transport and selection of the accelerated 

particles, and the third section in air, a dosimetric system for real time 

monitoring of the delivered dose on samples at the irradiation point 

(Fig. 1). Moreover, detectors for diagnostics will be placed respectively 

after the collection system and at the end of the in-vacuum transport 

beamline to measure the properties of the transported beams, namely 

beam emittance, fluence and energy spectra. 

Concerning the collection and selection, the in-vacuum transport beam-line that will be installed at ELIMAIA consists of three 

main elements: a collection system, namely a set of Permanent 

Magnet Quadrupoles (PMQs), placed close to the laser-target 

interaction point, an Energy Selection System (ESS) based on 

four resistive dipoles, and a set of conventional electromagnetic 

transport elements, two quadrupoles and two steering magnets. 

The beam-line has been designed to deliver laser-driven ions up to 

60 MeV=u, offering, as output, a controllable beam in terms of 

energy spread (varying from 5% up to 20% for the highest energies), angular divergence and, hence, variable beam spot size 

between 0.1–10 mm with a reasonable transmission efficiency 

(namely 106 1011 ions=pulse). The final beam dimension can be 

achieved using a conventional doublet of quadrupoles with a 

maximum gradient of 5 T/m and a bore of 70 mm and eventually 

using collimators. 

In order to fulfil the project requirements, the two main elements of the in-vacuum section, the PMQs system and the ESS, 

have to be optimized. The aim of the collection system is to collect 

the largest fraction of the accelerated ions within a certain energy 

range, reduce their angular divergence and inject them into the 

selection system, which will cut the particles outside the energy 

range of interest. The beams coming out from this first part of the 

beam-line (PMQsþESS) will have reduced angular and energy 

spreads, therefore, they are easier to be transported and shaped 

with conventional magnetic lenses, such as resistive quadrupoles 

and steerers. They will be placed in the last part of the in-vacuum 

beam-line. However, although the transport elements will allow to 

obtain beams selected in energy and with small divergence, the 

beam properties are still far from the typical features characterizing the conventional accelerated beams, from the point of view 

of the temporal structure. Indeed, the transported laseraccelerated ion beams will be characterized by very high intensities per pulse, i.e. up to 107 1010 

particles per bunch, and very 

short temporal profile (ns), compared to 108 109 particles/s 

accelerated by conventional clinical machines. This results in an 

extremely high dose rates, i.e. 106 109 Gy=min (vs 10–50 Gy/min 

in conventional proton therapy). In these conditions, innovative 

detectors have to be developed and new dosimetric procedures 



need to be assessed in order to deliver the dose with an accuracy 

as closer as possible to the one required in medical applications. 

Moreover, the whole ELIMED beamline has been simulated 

with the Monte Carlo Geant4 code for particle tracking in the 

matter [24,25]. Monte Carlo simulations have been widely used to 

support the design of some elements composing the beam line 

and to preliminary study the response of detectors [26]. Moreover, 

once the final configuration of the beamline is accurately reproduced, the Geant4 simulations will be used to predict the particle 

transport at specific positions along the beam line and to evaluate 

dose, fluence and particle distribution in the in-air section, where 

the experiments will be performed. 

2.1. The collection system 

The PMQs system consists of five quadrupoles as described in 

Table 1 [27,28]. The system has to collect a wide range of ion energies, 
Fig. 1. Layout of the ELIMED beamline with the three different sections. 

Table 1 

PMQs main features. 

No. of PMQs Geometric length 

(mm) 

Field gradient 

(T/m) 

Bore diameter 

(mm) 

1 160 101 30 

2 120 99 30 

2 80 94 30 
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from 3 MeV/u up to 60 MeV/u, and inject a given beam component in 

the ESS. Therefore, it has to be versatile in order to ensure a good 

transmission efficiency. A big bore of at least 36 mm with a strong 

field gradient and high uniformity is necessary. The net bore of 36 mm 

is reduced to 30 mm in diameter due to a 3 mm thick shielding pipe 

for magnet protection. Considering these requirements, the quadrupoles are based on a standard trapezoidal Halbach array [29,30] surrounded by two 

external hybrid arrays made of rectangular magnetic 

blocks and iron. The inner array is mainly responsible for the field 

quality of the quadrupole whereas the external arrays are necessary to 

increase the volume of the permanent magnet material and to reach 

the required field gradient. A scheme of the PMQs layout is shown in 

Fig. 2. 

This layout results to be robust with a good field quality and a cost 

effective alternative to a pure Halbach array. As shown in Fig. 2 the 

two external arrays are placed within an iron frame which has the role 

of supporting the structure as well as a magnetic flux guide. The inner 

array consists of two different permanent magnet alloys with different 

characteristics. In fact, in those sectors the external magnetic field ! H 

is higher than the main magnetic material coercitivity and, to avoid 

demagnetization, materials with different coercitivity are used. The 

field analysis, performed as described in [31], shows a gradient uniformity better than 2% and an integrated field uniformity better than 

o0:3% within a radius of 12 mm [27,28]. 

2.2. The energy selection system 

The ESS is based on four resistive dipoles with alternating field, 

similar to a bunch compressor, and the main trajectory parameters are 

calculated according to the description proposed in [32]. The main 

features are listed in Table 2. The total geometrical length of the 

system is 3.1 m and the reference particle path length is 3.168 m with 

a maximum radial deflection of 160 mm at the center. The selection 

path guarantees a fixed energy resolution of about 5% if a 5 mm 

aperture slit is used. The resolving power does not depend on the 

particle energy or ion species. In order to deflect particles with a 

specific energy along the reference trajectory the magnetic field has to 

be changed. It has to be varied between 0.085 and 1.2 T, which corresponds respectively to an energy ranging between 3 and 350 MeV 

for protons and between 3 MeV/u and 100 MeV/u for carbon ions 

(C þ6). The proposed layout allows to vary the energy resolution by 

changing the slit aperture size, which is an advantage particularly 

when selecting higher energies: in this case, indeed, laser-driven 

particles are less abundant, and they can be selected with a broader 

spectrum (corresponding to a bigger slit aperture) to keep the transmission efficiency acceptable. 

The pole shape has been designed in order to fulfil the requirements of Table 2. It ensures the required field uniformity and effective 

length for the whole range of magnetic fields [34,35]. The whole 

system is shown in Fig. 3 where it is also shown the reference particle 

trajectory. The system will be provided with two collimators upstream 

and downstream the selection, necessary to avoid spatial mixing of 

particles with large divergence and to refine the energy selection at 



the exit of the system. They will be placed 200 mm upstream and 

downstream the ESS, and will have a 30 mm diameter. In [27] is 

demonstrated the necessity to use a magnetic chicane to control the 

energy distribution of the selected beam, as a simple collimation 

system on the focal point does not allow a proper selection. 
Fig. 2. PMQs layout for the 60 MeV reference beam. From the left: 160 mm long quad 101 T/m, 120 mm long quad 99 T/m, 120 mm long quad 99 T/m, 80 mm long quad 

þ94 T/m, 80 mm long quad 94 T/m. Different colors indicate the different material used. (For interpretation of the references to color in this figure caption, the reader is 

referred to the web version of this paper.) 

Table 2 

ESS dipole features. 

Dipoles B field Length Effective length Gap 

4 0.085–1.2 T 400 mm 450 mm 59 mm 

GFR B uniformity Curvature radius Drift length Max J 

100 mm o0:5% 2:593 m 500 mm 2:53 A=mm2 

Fig. 3. Energy selector with vacuum chamber and reference trajectory. 
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2.3. Beam transport simulation 

In the present section, the preliminary beam-transport simulation results for the selection of 60 MeV protons are reported. The 

beam-line is configured as in Fig. 4. The selection slit, placed at 

3.8 m from the target, is a rectangular aperture with 40 mm height 

and 20 mm width in order to obtain an energy spread of 20%. 

The simulated input beams show a typical TNSA-like distribution, both in terms of energy and divergence (see [27] for details): 

beam spot size of 40 μm at the source and an angular divergence 

with a FWHM of 5° at 60 MeV, corresponding to an emittance of 

0.29 Pi.mm.mrad [Norm] and twiss parameter α ¼ �0:0032 and 

β ¼ 0:0001 mm=Pi:mrad. The transmission efficiency of the system 

results to be 12%, namely about 107 particles per laser shot. The 

beam divergence is considerably reduced to 0:31 after the selection, allowing to transport and shape the beam using conventional 

resistive quadrupoles. These conventional elements, placed at the 

end of the in-vacuum section, will transport the beam down to the 

in-air part of the beam-line, with the characteristics required for 

the dosimetric measurements. In fact, using two resistive quadrupoles with an effective length of 331.5 mm and a maximum 

gradient of 10 T/m, the output beam results to be quite uniform 

and similar to conventional accelerated ion beams after additional 

collimation, as shown in Fig. 5. The beam divergence is of about 

3 mrad. 

2.4. The in-air section: dosimetry and sample irradiation 

According to the beam transport simulations discussed in the 

previous section and considering the worst case for particle production at the target, a total of 107 protons are transported per pulse at 

60 MeV at the end of the in vacuum section, with a final collimator of 

10 mm of diameter. This configuration corresponds to about 2 cGy per 

pulse that, assuming a repetition rate of 1 Hz, would provide a pulsed 

proton beam with an average dose rate of about 1.2 Gy/min, which 

represents the minimal requirement for typical radiobiology experiments. To perform such kind of experiments, the dosimetric system 

has to allow on-line dosimetry measurements with a level of accuracy 

within 5%. These peculiarities do not allow to use conventional 

detectors typically employed and suggested in the international protocols for dosimetry, due to ion recombination effects [36]. So far, 

a great number of proposals and studies investigating the possible medical applications of laser-accelerated protons achieving the 

accuracy required by clinical constraints have been started, see e.g. 

[37,38]. In the ELIMED beam line, we are realizing detectors that are 

dose-rate independent and specifically designed to work in a typical 

laser-driven environment, also characterized by not-negligible electromagnetic pulses [39]. 

In particular, for relative dosimetry we are realizing a secondary 

electron monitor (SEM) and a multi-gap ionization chamber (IC); for 

absolute dosimetry, a Faraday cup (FC) specifically designed to decrease uncertainties in the collected charge has been realized [40]. 

Moreover, a sample irradiation system (SIS) will be installed at the end 
Fig. 4. Scheme of the simulated beamline with envelop of 60 MeV protons. 

Fig. 5. Beam spot at the beam line output, before injection in the in-air section. 

Color bar is referred to particle energy in MeV. (For interpretation of the references 

to color in this figure caption, the reader is referred to the web version of this 

paper.) 
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of the in-air section, allowing the positioning of the cell samples with 

a sub-millimetric precision (Fig. 6). 

The SEM is a thin metallic foil detector, whose working principle is 

based on the secondary electron emission (SEE). It will be mounted in 

a vacuum chamber, placed at the end of the in-vacuum beam line 

section, upstream the kapton window. 

The multi-gap IC is an innovative prototype designed to real-time 

measure the dose delivered per pulse, without affecting the beam 

transport downstream at the irradiation point. It is an in-transmission 

air-filled chamber and it will be cross-calibrated against the FC 

absolute dosimeter. The presence of a second gap close to the first one 



allows to correct for ion recombination effects caused by the very high 

dose rate per pulse. The working principle of this detector is based on 

the idea that the recombination effects can be corrected once the 

collection efficiency f in specific conditions is known. After a calibration procedure of the two gaps, the collection efficiencies of the gaps f1 

and f2 as a function of the voltage can be obtained. Finally, a relation 

between f1 and the ratio f1/f2 can be experimentally determined and 

the collected charge can be corrected for each pulse. 

The FC has been designed including an additional electrode with a 

particular geometrical shape to further repel the secondary electrons 

and to increase the accuracy of the measured charge. Together with 

the collected charge, the effective beam area and the energy spectrum 

have to be retrieved for the measurement of the absolute dose with a 

FC. They can be both obtained using radiochromic films (RCF) that, in 

case of energy spectra measurements, have to be used in stack configuration. These dosimeters, although allow to obtain spatial dose 

distributions with high spatial resolution, are passive detectors, thus 

they need a post processing analysis. To have real-time information 

we foresee to use scintillating fibres for the beam spot measurement 

and stack of scintillators for the energy spectra. 

3. Conclusion 

In this contribution an overview of the ELIMED section of the 

ELIMAIA beamline that will be installed at the ELI-Beamlines facility in 

Prague has been presented. Feasibility studies of both the collection and selection systems have been carried out and they will be 

realized within 2016. The detectors for diagnostics have been recently 

acquired: energy spectra measurements will be performed with CVD 

(Chemical Vapor Deposition) diamonds and employing the TOF (Time 

of Flight) technique. The dosimetric system, set in the in-air section of 

the ELIMED beam line, has been realized and both detectors for 

diagnostics and dosimetry have been preliminary tested with conventional proton beams accelerated at 62 MeV by the Superconducting Cyclotron of 

the LNS-INFN in Catania. Some of them have been 

tested also with optically accelerated beams and further experimental campaigns in laser-driven facilities have been planned for 

2016. The ELIMED beam line section will be delivered and assembled 

in Prague (CZ) at the end of 2017, and it will offer the possibility to 

study the biological properties and the potentialities of laser-driven 

ion beams with well controlled systems. By means of the transport 

devices and the diagnostics/dosimetric systems we are developing, 

precise dosimetric measurements and accurate cell sample irradiations will be possible at the ELIMAIA beam line, giving the opportunity 

to study the peculiarities of laser-driven beams for a possible future 

application for therapeutic purposes. 
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