41 research outputs found

    The Impact of Simulated Sulfate Deposition on Peatland Testate Amoebae

    Get PDF
    Peatlands subjected to sulfate deposition have been shown to produce less methane, believed to be due to competitive exclusion of methanogenic archaea by sulfate-reducing bacteria. Here, we address whether sulfate deposition produces impacts on a higher microbial group, the testate amoebae. Sodium sulfate was applied to experimental plots on a Scottish peatland and samples extracted after a period of more than 10 years. Impacts on testate amoebae were tested using redundancy analysis and Mann-Whitney tests. Results showed statistically significant impacts on amoebae communities particularly noted by decreased abundance of Trinema lineare, Corythion dubium, and Euglypha rotunda. As the species most reduced in abundance are all small bacterivores we suggest that our results support the hypothesis of a shift in dominant prokaryotes, although other explanations are possible. Our results demonstrate the sensitivity of peatland microbial communities to sulfate deposition and suggest sulfate may be a potentially important secondary control on testate amoebae communities

    Density and community structure of soil- and bark-dwelling microarthropods along an altitudinal gradient in a tropical montane rainforest

    Get PDF
    Microarthropod communities in the soil and on the bark of trees were investigated along an elevation gradient (1,850, 2,000, 2,150, 2,300 m) in a tropical montane rain forest in southern Ecuador. We hypothesised that the density of microarthropods declines with depth in soil and increases with increasing altitude mainly due to the availability of resources, i.e. organic matter. In addition, we expected bark and soil communities to differ strongly, since the bark of trees is more exposed to harsher factors. In contrast to our hypothesis, the density of major microarthropod groups (Collembola, Oribatida, Gamasina, Uropodina) was generally low and decreased with altitude. However, as we predicted the density of each of the groups decreased with soil depth. Density of microarthropods on tree bark was lower than in soil. Overall, 43 species of oribatid mites were found, with the most abundant higher taxa being Poronota, pycnonotic Apheredermata, Mixonomata and Eupheredermata. The oribatid mite community on bark did not differ significantly from that in soil. The number of oribatid mite species declined with altitude (24, 23, 17 and 13 species at 1,850, 2,000, 2,150 and 2,300 m, respectively). Rarefaction curves indicate that overall about 50 oribatid mite species are to be expected along the studied altitudinal gradient. Results of this study indicate (1) that microarthropods may be limited by the quality of resources at high altitudes and by the amount of resources at deeper soil layers, and (2) that the bark of trees and the soil are habitats of similar quality for oribatid mites

    Trade-offs between multifunctionality and profit in tropical smallholder landscapes

    Get PDF
    Land-use transitions can enhance the livelihoods of smallholder farmers but potential economic-ecological trade-offs remain poorly understood. Here, we present an interdisciplinary study of the environmental, social and economic consequences of land-use transitions in a tropical smallholder landscape on Sumatra, Indonesia. We find widespread biodiversity-profit trade-offs resulting from land-use transitions from forest and agroforestry systems to rubber and oil palm monocultures, for 26,894 aboveground and belowground species and whole-ecosystem multidiversity. Despite variation between ecosystem functions, profit gains come at the expense of ecosystem multifunctionality, indicating far-reaching ecosystem deterioration. We identify landscape compositions that can mitigate trade-offs under optimal land-use allocation but also show that intensive monocultures always lead to higher profits. These findings suggest that, to reduce losses in biodiversity and ecosystem functioning, changes in economic incentive structures through well-designed policies are urgently needed

    Tree islands enhance biodiversity and functioning in oil palm landscapes

    Get PDF
    In the United Nations Decade on Ecosystem Restoration1, large knowledge gaps persist on how to increase biodiversity and ecosystem functioning in cash crop-dominated tropical landscapes2. Here, we present findings from a large-scale, 5-year ecosystem restoration experiment in an oil palm landscape enriched with 52 tree islands, encompassing assessments of ten indicators of biodiversity and 19 indicators of ecosystem functioning. Overall, indicators of biodiversity and ecosystem functioning, as well as multidiversity and ecosystem multifunctionality, were higher in tree islands compared to conventionally managed oil palm. Larger tree islands led to larger gains in multidiversity through changes in vegetation structure. Furthermore, tree enrichment did not decrease landscape-scale oil palm yield. Our results demonstrate that enriching oil palm-dominated landscapes with tree islands is a promising ecological restoration strategy, yet should not replace the protection of remaining forests

    Soil protist life matters!

    Get PDF
    Soils host most biodiversity on Earth, with a major fraction of its taxonomic diversity still to be uncovered and most of its functional knowledge to be determined. Much focus has been - and still is - on bacteria, fungi and animals. Clearly, without any of those components, soils would not function as they do. However, the group that constitutes the bulk of eukaryotic diversity and plays a central role for soil functioning is missing: protists. As the main consumers of the microbiome, protists shape its composition and functioning. Other less known functions performed by protists may be equally important. Protists also include primary producers, decomposers, animal parasites and plant pathogens. We briefly review the many functions protists perform in soils and argue that soil biodiversity studies that ignore protists miss some potential mechanistic insight into the drivers of observed patterns. We highlight that the immense functional repertoire of protist affects virtually every soil process, from carbon cycling to primary production, including crop production. Therefore, we call for truly integrated biodiversity assessments including protists, without which the soil food-web and processes cannot reliably be understood: protists matter

    Chapter 2 - Protozoa. Amoebae

    No full text
    corecore