53 research outputs found

    Role of vasopressin in the treatment of anaphylactic shock in a child undergoing surgery for congenital heart disease: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The incidence of anaphylactic reactions during anesthesia is between 1:5000 and 1:25000 and it is one of the few causes of mortality directly related to general anesthesia. The most important requirements in the treatment of this clinical condition are early diagnosis and maintenance of vital organ perfusion. Epinephrine administration is generally considered as the first line treatment of anaphylactic reactions. However, recently, new pharmacological approaches have been described in the treatment of different forms of vasoplegic shock.</p> <p>Case presentation</p> <p>We describe the case of a child who was undergoing surgery for ventricular septal defect, with an anaphylactic reaction to heparin that was refractory to epinephrine infusion and was effectively treated by low dose vasopressin infusion.</p> <p>Conclusion</p> <p>In case of anaphylactic shock, continuous infusion of low-dose vasopressin might be considered after inadequate response to epinephrine, fluid resuscitation and corticosteroid administration.</p

    Comparative analyses imply that the enigmatic sigma factor 54 is a central controller of the bacterial exterior

    Get PDF
    Contains fulltext : 95738.pdf (publisher's version ) (Open Access)BACKGROUND: Sigma-54 is a central regulator in many pathogenic bacteria and has been linked to a multitude of cellular processes like nitrogen assimilation and important functional traits such as motility, virulence, and biofilm formation. Until now it has remained obscure whether these phenomena and the control by Sigma-54 share an underlying theme. RESULTS: We have uncovered the commonality by performing a range of comparative genome analyses. A) The presence of Sigma-54 and its associated activators was determined for all sequenced prokaryotes. We observed a phylum-dependent distribution that is suggestive of an evolutionary relationship between Sigma-54 and lipopolysaccharide and flagellar biosynthesis. B) All Sigma-54 activators were identified and annotated. The relation with phosphotransfer-mediated signaling (TCS and PTS) and the transport and assimilation of carboxylates and nitrogen containing metabolites was substantiated. C) The function annotations, that were represented within the genomic context of all genes encoding Sigma-54, its activators and its promoters, were analyzed for intra-phylum representation and inter-phylum conservation. Promoters were localized using a straightforward scoring strategy that was formulated to identify similar motifs. We found clear highly-represented and conserved genetic associations with genes that concern the transport and biosynthesis of the metabolic intermediates of exopolysaccharides, flagella, lipids, lipopolysaccharides, lipoproteins and peptidoglycan. CONCLUSION: Our analyses directly implicate Sigma-54 as a central player in the control over the processes that involve the physical interaction of an organism with its environment like in the colonization of a host (virulence) or the formation of biofilm

    Plasmids and Rickettsial Evolution: Insight from Rickettsia felis

    Get PDF
    BACKGROUND: The genome sequence of Rickettsia felis revealed a number of rickettsial genetic anomalies that likely contribute not only to a large genome size relative to other rickettsiae, but also to phenotypic oddities that have confounded the categorization of R. felis as either typhus group (TG) or spotted fever group (SFG) rickettsiae. Most intriguing was the first report from rickettsiae of a conjugative plasmid (pRF) that contains 68 putative open reading frames, several of which are predicted to encode proteins with high similarity to conjugative machinery in other plasmid-containing bacteria. METHODOLOGY/PRINCIPAL FINDINGS: Using phylogeny estimation, we determined the mode of inheritance of pRF genes relative to conserved rickettsial chromosomal genes. Phylogenies of chromosomal genes were in agreement with other published rickettsial trees. However, phylogenies including pRF genes yielded different topologies and suggest a close relationship between pRF and ancestral group (AG) rickettsiae, including the recently completed genome of R. bellii str. RML369-C. This relatedness is further supported by the distribution of pRF genes across other rickettsiae, as 10 pRF genes (or inactive derivatives) also occur in AG (but not SFG) rickettsiae, with five of these genes characteristic of typical plasmids. Detailed characterization of pRF genes resulted in two novel findings: the identification of oriV and replication termination regions, and the likelihood that a second proposed plasmid, pRFδ, is an artifact of the original genome assembly. CONCLUSION/SIGNIFICANCE: Altogether, we propose a new rickettsial classification scheme with the addition of a fourth lineage, transitional group (TRG) rickettsiae, that is unique from TG and SFG rickettsiae and harbors genes from possible exchanges with AG rickettsiae via conjugation. We offer insight into the evolution of a plastic plasmid system in rickettsiae, including the role plasmids may have played in the acquirement of virulence traits in pathogenic strains, and the likely origin of plasmids within the rickettsial tree

    Practice management guideline on prehospital emergency anaesthesia. Working group Prehospital emergency anaesthesia of the scientific working group on emergency medicine of the German Society of Anaesthesiology and Intensive Care Medicine

    No full text
    Inducing anaesthesia outside the hospital is an important therapeutic intervention in emergency medicine; it is much more difficult to accomplish than inside the hospital. Its primary goals include hypnosis and analgesia which enable airway management to achieve mechanical ventilation and adequate oxygenation. Secondary goals of emergency anaesthesia include amnesia, anxiolysis, reduced oxygen consumption and work of breathing, and thus protection of vital organs and avoidance of secondary myocardial injury or cerebral injuries. Prior to prehospital induction of anaesthesia, patient-, scene- and operator-specific factors need to be considered. The rapid sequence induction includes basic monitoring, pre-oxygenation, standardized preparation of drugs and equipment, administration of drugs, removal of the cervical collar and manual in-line stabilization during intubation attempt (if needed), intubation and confirmation of endotracheal intubation. Every spontaneously breathing emergency patient should receive pre-oxygenation for at least 3-4 min with 12-15 l oxygen per min and a tight-sealing facemask, or a demand valve. The standardized preparation process includes preparation and labeling drugs/syringes, checking the bag-valve mask, preparing the endotracheal tube with a stylet and blocking syringe, as well as having a stethoscope and material to secure the tube at hand, as well as alternative airway devices. It also includes immediate access to alternative means of airway management, as well as a suction unit, ventilator and monitoring devices including capnography. Basic monitoring for prehospital emergency anaesthesia includes ECG, an automatic/manual blood pressure cuff, and pulse oximetry. Continuous capnography is used without exception to confirm ventilation, to detect possible disconnections/dislocations, and for indirect monitoring of hemodynamics. Prior to induction of prehospital emergency anaesthesia, two peripheral intravenous catheters should be placed if possible
    corecore