67 research outputs found

    PET/MR imaging of bone lesions - implications for PET quantification from imperfect attenuation correction

    Full text link
    PURPOSE: Accurate attenuation correction (AC) is essential for quantitative analysis of PET tracer distribution. In MR, the lack of cortical bone signal makes bone segmentation difficult and may require implementation of special sequences. The purpose of this study was to evaluate the need for accurate bone segmentation in MR-based AC for whole-body PET/MR imaging. METHODS: In 22 patients undergoing sequential PET/CT and 3-T MR imaging, modified CT AC maps were produced by replacing pixels with values of >100 HU, representing mostly bone structures, by pixels with a constant value of 36 HU corresponding to soft tissue, thereby simulating current MR-derived AC maps. A total of 141 FDG-positive osseous lesions and 50 soft-tissue lesions adjacent to bones were evaluated. The mean standardized uptake value (SUVmean) was measured in each lesion in PET images reconstructed once using the standard AC maps and once using the modified AC maps. Subsequently, the errors in lesion tracer uptake for the modified PET images were calculated using the standard PET image as a reference. RESULTS: Substitution of bone by soft tissue values in AC maps resulted in an underestimation of tracer uptake in osseous and soft tissue lesions adjacent to bones of 11.2 ± 5.4 % (range 1.5-30.8 %) and 3.2 ± 1.7 % (range 0.2-4 %), respectively. Analysis of the spine and pelvic osseous lesions revealed a substantial dependence of the error on lesion composition. For predominantly sclerotic spine lesions, the mean underestimation was 15.9 ± 3.4 % (range 9.9-23.5 %) and for osteolytic spine lesions, 7.2 ± 1.7 % (range 4.9-9.3 %), respectively. CONCLUSION: CT data simulating treating bone as soft tissue as is currently done in MR maps for PET AC leads to a substantial underestimation of tracer uptake in bone lesions and depends on lesion composition, the largest error being seen in sclerotic lesions. Therefore, depiction of cortical bone and other calcified areas in MR AC maps is necessary for accurate quantification of tracer uptake values in PET/MR imaging

    Hybrid PET- and MR-driven attenuation correction for enhanced ¹⁸F-NaF and ¹⁸F-FDG quantification in cardiovascular PET/MR imaging

    Get PDF
    Background: The standard MR Dixon-based attenuation correction (AC) method in positron emission tomography/magnetic resonance (PET/MR) imaging segments only the air, lung, fat and soft-tissues (4-class), thus neglecting the highly attenuating bone tissues and affecting quantification in bones and adjacent vessels. We sought to address this limitation by utilizing the distinctively high bone uptake rate constant Ki expected from ¹⁸F-Sodium Fluoride (¹⁸F-NaF) to segment bones from PET data and support 5-class hybrid PET/MR-driven AC for ¹⁸F-NaF and ¹⁸F-Fluorodeoxyglucose (¹⁸F-FDG) PET/MR cardiovascular imaging. Methods: We introduce 5-class Ki/MR-AC for (i) ¹⁸F-NaF studies where the bones are segmented from Patlak Ki images and added as the 5th tissue class to the MR Dixon 4-class AC map. Furthermore, we propose two alternative dual-tracer protocols to permit 5-class Ki/MR-AC for (ii) ¹⁸F-FDG-only data, with a streamlined simultaneous administration of ¹⁸F-FDG and ¹⁸F-NaF at 4:1 ratio (R4:1), or (iii) for ¹⁸F-FDG-only or both ¹⁸F-FDG and ¹⁸F-NaF dual-tracer data, by administering ¹⁸F-NaF 90 minutes after an equal ¹⁸F-FDG dosage (R1:1). The Ki-driven bone segmentation was validated against computed tomography (CT)-based segmentation in rabbits, followed by PET/MR validation on 108 vertebral bone and carotid wall regions in 16 human volunteers with and without prior indication of carotid atherosclerosis disease (CAD). Results: In rabbits, we observed similar (< 1.2% mean difference) vertebral bone ¹⁸F-NaF SUVmean scores when applying 5-class AC with Ki-segmented bone (5-class Ki/CT-AC) vs CT-segmented bone (5-class CT-AC) tissue. Considering the PET data corrected with continuous CT-AC maps as gold-standard, the percentage SUVmean bias was reduced by 17.6% (¹⁸F-NaF) and 15.4% (R4:1) with 5-class Ki/CT-AC vs 4-class CT-AC. In humans without prior CAD indication, we reported 17.7% and 20% higher ¹⁸F-NaF target-to-background ratio (TBR) at carotid bifurcations wall and vertebral bones, respectively, with 5- vs 4-class AC. In the R4:1 human cohort, the mean ¹⁸F-FDG:¹⁸F-NaF TBR increased by 12.2% at carotid bifurcations wall and 19.9% at vertebral bones. For the R1:1 cohort of subjects without CAD indication, mean TBR increased by 15.3% (¹⁸F-FDG) and 15.5% (¹⁸F-NaF) at carotid bifurcations and 21.6% (¹⁸F-FDG) and 22.5% (¹⁸F-NaF) at vertebral bones. Similar TBR enhancements were observed when applying the proposed AC method to human subjects with prior CAD indication. Conclusions: Ki-driven bone segmentation and 5-class hybrid PET/MR-driven AC is feasible and can significantly enhance ¹⁸F-NaF and ¹⁸F-FDG contrast and quantification in bone tissues and carotid walls

    The role of preclinical SPECT in oncological and neurological research in combination with either CT or MRI

    Get PDF

    Effect of geometrical constraints on PET performance in whole body simultaneous PET-MR

    No full text
    Simultaneous PET-MR scanners are being developed for whole body imaging. These systems require compact and MR compatible readout for the PET component. Another important modification is the geometry of the PET scanner which is determined by space constraints imposed by the surrounding MR scanner. The maximal radius of the PET scanner is limited and it becomes difficult to insert end shielding. The aim of this study is to determine the effect of modified geometry and reduced shielding on the PET performance with regards to spatial resolution, singles, trues, scatter and random coincidences. Materials and methods: All data were simulated using the GATE Monte Carlo simulation tool. The reference system for the simulation was a state of the art PET-CT scanner (Gemini TF scanner with LYSO crystals Philips Medical systems). This system has a diameter of 90 cm and end shields with an inner diameter of 70 cm. The energy resolution of the system is 12 % and based on this system a whole body PET scanner was designed with less modules positioned at a smaller radius. This modification enables it to fit inside a 3T MR scanner. This system was simulated without end shielding and with limited end shielding (60 cm diameter). For the three systems the trues, random and scatter were simulated to quantify the effect of the modified geometry. The object used was the 70 cm long NEMA scatter phantom containing activity in a line source at a radial distance of 4.5 cm. Results: Reducing the diameter from 90 cm to 70 cm results in an increase of the amount of trues by 28 %. The relative scatter fraction increases from 33 % to 36 % for the 70 cm diameter system without end shields. The introduction of short shields resulted in a small reduction (2 %) of scattered and random coincidence fraction. More detailed analysis about origin of the events showed that in the new design 85 % of scattered events originates from inside the FOV, while 90 % of the random coincidences is caused by outside FOV activity. Conclusions: For PET systems with good energy resolution, end shields only play a limited role in the reduction of scatter. The end shields are only blocking a limited part of the scattered outside FOV activity and are mostly effective in reducing the singles and resulting randoms from outside FOV
    corecore